|
||||
|
ОБРАЗОВАНИЕ И ЭВОЛЮЦИЯ ГАЛАКТИКИ Вначале было газовое облако, размеры которого в десятки раз превышали размеры впоследствии образованной из него Галактики. Под действием собственной гравитации облако постепенно сжималось (коллапсировало). Плотность вещества при этом увеличивалась. Когда она достигла некоторой критической величины, началось дробление (фрагментация) единого облака. Фрагментация может начаться по одной из двух причин. Первая — гравитационная неустойчивость или, другими словами, неустойчивость Джинса. Смысл ее состоит в следующем. По мере того как облако гравитационными силами сжимается, оно должно за счет гравитационной энергии нагреваться. Но эта энергия превращается в излучение и таким образом покидает сжимающееся облако. Поэтому его температура не увеличивается, оно не нагревается. То есть сжатие происходит при постоянной температуре (изотермично). Поэтому этот процесс называют изотермическим коллапсом. При таком сжатии облака, а значит, при увеличении плотности вещества без увеличения температуры, уменьшается масса Джинса. Это обстоятельство является решающим, поскольку при этом незначительные неоднородности (флуктуации) плотности могут начать сжиматься под действием собственной гравитации. Произойдет дробление (фрагментация) первоначального облака. Этот процесс дробления под действием силы гравитации происходит в результате гравитационной неустойчивости. Если процесс образования новых облаков из единого первоначального будет происходить достаточно быстро, то они сформируются в отдельные объекты. Каждое из так образуемых облаков при соответствующих условиях может точно так же распасться на отдельные облака. Так образуется целая иерархия облаков, которые гравитационно связаны друг с другом. Дробление первоначального единого облака может произойти и по другой причине. Первоначальная, затравочная неоднородность его возникает в результате тепловых процессов, а точнее, тепловой неустойчивости. Такие условия возникают, когда с увеличением плотности вещества давление уменьшается или, наоборот, когда с уменьшением плотности вещества его давление увеличивается. Такое состояние является неустойчивым (естественной является ситуация, когда с увеличением плотности вещества увеличивается его давление). Поэтому начнется дробление первоначального облака. Чтобы такой процесс начался, надо, чтобы плотность вещества достигла определенной величины. Таким образом облако дробится более быстро, чем при гравитационной неустойчивости. В реальных условиях один из этих двух путей дробления первоначального облака эффективнее другого. Например, при определенной плотности вещества может начаться гравитационная фрагментация, но еще не может происходить тепловая фрагментация. Дробление может начаться вследствие гравитационной неустойчивости и в последующем продолжиться путем тепловой неустойчивости. Первоначальное облако фрагментировало на отдельные облака меньших размеров. Каждое из этих новых облаков в будущем сжимается и из него может образоваться звезда. Если быть точным, то не каждое. Дальнейшему сжатию облака могут воспрепятствовать некоторые силы и процессы. То, что основной характеристикой, от которой зависит фрагментация первоначального облака, является плотность вещества, установлено. Несмотря на то что массы и размеры галактик отличаются в сотни и тысячи раз, их плотности одинаковы. Это говорит о том, что галактики образовались тогда, когда плотность вещества в первоначальном облаке достигла определенной критической величины. Если радиус облака уменьшится в два раза, плотность вещества увеличится в 8 раз (23= 8). Первоначальное облако, из которого в будущем образуется Галактика, состояло из водорода. Когда оно распалось на отдельные облака, то они при гравитационном сжатии стали превращаться в звезды. Образование звезд происходило следующим образом. Облака — протозвезды сжимались под действием сил гравитации. На определенном этапе сжатия облака его плотность увеличивается настолько, что оно перестает выпускать наружу инфракрасное излучение вещества облака. Это приводит к очень быстрому росту температуры в центральных областях облака. Образуется большой перепад температуры между центральной частью протозвезды и внешними слоями. Перепад давления вызывает процессы конвекции, которые стремятся выровнять температуру во всем облаке — протозвезде. В наружных слоях протозвезды температура достигает примерно 2500 К. Протозвезда продолжает сжиматься, ее размеры уменьшаются. Температура в ее недрах продолжает увеличиваться. В какой-то момент она достигает десяти миллионов градусов. Тогда «включаются» термоядерные реакции с участием ядер водорода (протон-протонные реакции), протозвезда перестает сжиматься. Протозвезда превращается в звезду. Энергия звезды, благодаря которой поддерживается высокая температура в ее недрах, черпается из термоядерного синтеза. В этих термоядерных реакциях четыре протона путем разных преобразований соединяются так, что образуют ядро гелия (альфа-частицу, состоящую из двух протонов и двух нейтронов). При превращении одних частиц в другие часть массы превращается в энергию. Можно рассчитать, какое количество энергии должно выделиться в реакциях образования альфа-частиц из протонов. Это можно сделать так. Масса одного протона равна 1,008 атомной единицы. Масса альфа-частицы равна 4,0039 атомной единицы. При превращении четырех протонов в одну альфа-частицу «исчезает» масса величиной 0,007 атомной единицы. Точнее, она не исчезает, а превращается в энергию, ядерную энергию. Можно оценить запасы ядерной энергии звезды. Эволюция звезды определяется, главным образом, ее массой. Естественно, чем больше масса звезды, тем больше энергия, которая может выделиться внутри звезды в процессе термоядерных реакций. Другими словами, тем больше горючего содержится внутри такой звезды. Казалось бы, такая звезда должна жить (светиться) дольше. Но это не так. Чем массивнее звезда, тем больше она излучает энергии в космическое пространство. Так, если массу звезды увеличить в три раза, то ее расход энергии на излучение (светимость) увеличится в девять раз! Поэтому с увеличением массы звезды продолжительность ее жизни резко уменьшается. Так, например, горючего для ядерного реактора внутри Солнца хватит еще на десятки миллиардов лет. Около пяти миллиардов лет это горючее уже расходуется. Но, если масса звезды в 50 раз превышает массу Солнца, то ее горючего хватит всего на несколько миллионов лет! Когда в процессе термоядерных реакций в ядре звезды израсходуется весь водород (он превращается в гелий), то термоядерные реакции превращения водорода в гелий начинают идти в слое вокруг ядра. Светимость звезды на этом этапе увеличивается. Звезда как будто разбухает. Но температура поверхностных слоев звезды уменьшается, поскольку размеры ее увеличились, поэтому она начинает светиться не голубым, а красным цветом. Такую звезду называют красным гигантом. Дальше звезда эволюционирует следующим образом. Поскольку в ядре не идут термоядерные реакции и не выделяется тепло, она постепенно сжимается под действием сил гравитации. В результате сжатия ядра увеличивается его температура. Она достигает 100–150 миллионов градусов. При столь высокой температуре гелий становится источником тепла: идут термоядерные реакции, в результате которых ядра гелия превращаются в ядра углерода. Давление внутри ядра звезды увеличивается, поэтому сжатие прекращается. Светимость звезды на этом этапе увеличивается, так как в нее вносит вклад и выделение энергии из ядра. В результате увеличивается и поверхностная температура звезды. Но когда-то кончается и гелий. Причем значительно быстрее, чем кончился водород. Когда это происходит, звезда теряет свои наружные слои. Они расширяются и отделяются от ядра звезды. Эти слои впоследствии наблюдаются как планетарная туманность. Судьба ядра звезды после этого зависит от ее массы. Если масса звезды меньше 1,2 массы Солнца, то вещество звезды под действием гравитационного сжатия уплотняется таким образом, что его плотность достигает 10 тысяч тонн в кубическом сантиметре. При такой огромной плотности атомы разрушаются. После этого сжатие звезды прекращается, так как ему начинает противодействовать сила упругости образованного очень плотного газа. Образованная таким путем звезда (ее называют «мертвой») является белым карликом. Таким образом, до того, как звезда превратится в белого карлика, она на некоторое время становится красным гигантом. Затем белый карлик в течение нескольких миллиардов лет остывает и превращается в черного карлика, то есть тело не излучающее, а поэтому и невидимое. И.С. Шкловский назвал его «трупом» звезды. Если масса первоначальной зашлакованной звезды превышает критическую величину в 1,2 массы Солнца, то силы упругости сверхплотного (вырожденного) газа не в состоянии справиться с силами гравитационного сжатия. Если масса звезды не превышает 10 масс Солнца (но больше 1,2 массы Солнца), то события развиваются следующим образом. Чрезмерное сжатие звезды приводит к сильному увеличению ее температуры. Когда температура превысит пять миллиардов градусов, начинают играть важную роль реакции, в результате которых образуется нейтрино. Поскольку нейтрино не обладает зарядом и массой покоя, оно практически беспрепятственно проникает через любые вещества, в том числе и через вещество звезды. Энергия, которую создает внутри звезды сильное гравитационное сжатие, этими частицами выносится наружу. Они выносят больше энергии, нежели ее расходует звезда на свое свечение в видимом диапазоне. Так как энергия изнутри звезды выносится наружу нейтрино, то звезда получает возможность сжиматься быстрее. Сжатие удваивается каждую секунду. Остановить это сжатие уже нельзя. Но когда огромная звезда ужимается до размеров сферы с радиусом в 10 километров и плотность вещества звезды достигает миллиарда тонн в кубическом сантиметре, вступают в игру новые силы, возникающие при деформации атомных ядер. Ядра распадаются на протоны и нейтроны. Но протоны, захватив на каждый протон по одному электрону, превращаются в нейтроны (при этой реакции также выделяется нейтрино). С этого времени вещество звезды состоит преимущественно из нейтронов. Остальные элементарные частицы представляют собой просто примеси в пренебрежимо малых количествах. Для этого процесса введен термин: нейтронизация вещества звезды. При этом образуется нейтронное вещество со свойствами несжимаемой жидкости. Плотность его равна плотности вещества внутри атомного ядра. Но нейтроны сцеплены между собой не ядерными силами (как внутри ядра), а силами гравитации. Поскольку образованная таким путем нейтронная жидкость является несжимаемой, то дальнейшее сжатие звезды прекращается. Силы гравитационного сжатия уравновешиваются силами упругости нейтронной жидкости. Это успешно происходит в том случае, если масса звезды не превышает вдвое массу Солнца. В том случае, если масса звезды превышает двойную массу Солнца, звезда может остановить свое сжатие только в том случае, если она каким-либо образом сбросит с себя лишнюю массу в форме взрыва. Взрыв происходит в образовавшемся ядре звезды, поскольку оно является неустойчивым. При взрыве выделяется энергия и образуется ударная волна, которая, распространяясь наружу, выбрасывает из звезды наружные слои. Они отделяются от звезды и образуют газовое облако, которое по инерции продолжает быстро расширяться. Оптическая яркость звезды после взрыва увеличивается в миллион раз. Это настолько заметное явление на небе, что его можно наблюдать даже невооруженным глазом. Это явление было названо вспышкой Сверхновой звезды. Имеются и новые звезды, яркость которых значительно меньше. Физическая природа новых звезд иная. Какова судьба звезды, масса которой больше 10 масс Солнца? Если звезда, масса которой в 10 раз превышает массу Солнца, начнет очень быстро сжиматься (то есть коллапсировать), то это сжатие остановить уже нечем. При меньших массах выход был найден в том, что звезда жертвовала своим атомным строением — атомы были сломаны, и в результате высвобождались силы, которые остановили сжатие звезды. При этом образовался белый карлик. Во втором случае были сломлены и сами ядра. Сжатие было остановлено силами упругости несжимаемой (нейтронной) жидкости. При этом образовалась нейтронная звезда. В случае очень массивной звезды ломать уже нечего и более мощных сил, чем сила сжатия, нет. Поэтому сжатие (коллапс) звезды будет продолжаться неограниченно. Оно остановится только с образованием нового объекта, названного черной дырой. Радиус черной дыры равен всего 1–3 километрам. Образование звезд во всем протогалактическом облаке происходило до тех пор, пока там имелись необходимые для этого условия, то есть пока плотность вещества не упала ниже критического уровня. На определенном этапе были образованы звезды с различными массами. Дальше происходила эволюция этих звезд. С тех пор прошло примерно 12 миллиардов лет, и эволюционировавшие звезды остались светить до сих пор. Значительная часть первоначально образованных звезд в процессе своей эволюции прошла стадию Сверхновых звезд, то есть на том этапе, когда они израсходовали свое «горючее» и их вещество стало состоять в значительной мере из тяжелых химических элементов, они взрывались. При этом значительную часть вещества они сбрасывали в межзвездное пространство. Так, вещество облака, которое первоначально состояло из самого легкого химического элемента — водорода, после взрыва Сверхновых стало обогащаться тяжелыми элементами. Это значит, что новое поколение звезд должно было создаваться из нового «теста». Прошло определенное время после Большого Взрыва, и про-тогалактическое облако превратилось в звездную систему сферической формы. Образование звезд не могло продолжаться до тех пор, пока оставалось хоть сколько-нибудь строительного материала — вещества газопылевого облака. Ведь для образования звезд из этого вещества надо, чтобы оно имело достаточную плотность. А плотность со временем стала уменьшаться. Это происходило, во-первых, потому, что часть вещества изымалась на создание звезд, а во-вторых, потому, что взрывы Сверхновых разбивали образующиеся неоднородности газопылевого облака. Причем это происходило прежде всего в результате нагрева межзвездного газа излучением Сверхновой. Так первый этап звездообразования в народившейся нашей Галактике закончился. В результате прото-галактическое облако превратилось в систему, состоящую из звезд и межзвездного газа, этакую воздушную круглую булочку с изюмом. Размеры и масса этой «булочки» весьма внушительные. Внутренняя ее часть хорошо просматривается, поскольку она заполнена звездами, которые можно наблюдать. Эту часть называют гало. Масса гало равна примерно 21011 масс Солнца. Гало окружено сферической оболочкой-короной, масса которой в пять раз больше. Корону Галактики наблюдать трудно, если не сказать — невозможно. Во-первых, ее составляют звезды низкой светимости. Во-вторых, вполне допустимо, что корона содержит материю и в тех формах, которые пока что труднодоступны наблюдениям. Это могут быть черные дыры, нейтронные звезды или нейтрино с ненулевой массой покоя. На первый взгляд может показаться парадоксальным, что материю короны наблюдать мы практически не можем и в то же время приводим более-менее определенную величину массы короны. Но на самом деле противоречия здесь нет. Когда рассчитали, как должна вести себя система, состоящая из гало и диска, то оказалось, что такая система не является устойчивой, как это наблюдается. Для того чтобы она была устойчивой, необходимо, чтобы вокруг гало существовала массивная корона. Из условия устойчивости и была определена масса короны. Что собой представляют звезды, из которых состоит гало, звезды, которые первыми родились в Галактике еще 15–18 миллиардов лет тому назад, в молодости Галактики. Звезды в гало группируются в коллективы, скопления. Сейчас считается, что их в гало имеется всего примерно 500. Известно из них 130. Шаровые скопления распределены в гало неравномерно: они резко концентрируются к центру гало. Среднее значение радиуса шаровых скоплений равно 15 пк (рис. 6). Любопытно, что в гало содержится два типа шаровых скоплений. Звезды скоплений этих типов отличаются друг от друга химическим составом и распределением в пространстве. Скопления с малым содержанием тяжелых элементов (малометаллические) располагаются на больших расстояниях. На меньших расстояниях имеются обе группы шаровых скоплений, и богатая, и бедная металлами. В гало имеются также звезды, не входящие в скопления. Их называют звездами поля гало (звездами-одиночками). Эти звезды также делятся на такие же два класса. Мы уже знаем, что если звезда содержит больше тяжелых элементов, то есть более металлична, то она родилась позднее. Возраст этих звезд, составляющих промежуточную систему, меньше, чем малометаллических звезд. Они образовались на поздних стадиях сжатия протогалактики, когда межзвездная среда уже обогатилась тяжелыми элементами за счет взрывов Сверхновых звезд. Установлено, что шаровые скопления рождаются с массами, которые они имеют и сейчас. Звезды в скоплениях образуются очень быстро из-за газа. Поэтому не успевает происходить обогащение тяжелыми элементами. Подведем итог этой стадии образования Галактики. Сжатие протогалактического облака происходило в течение примерно трех миллиардов лет. Затем начался процесс образования и эволюции звезд. Звезды, проходя в своей эволюции взрывную стадию (стадию Сверхновых), выбрасывали в межзвездную среду созданные в них тяжелые химические элементы. Так звезды сбросили примерно половину всей массы, содержащейся в них. Межзвездная среда изменила свой химический состав. После образования определенного количества Сверхновых образование звезд прекратилось, так как облака, из которых должны были образоваться звезды, разрушались в результате разогрева межзвездного газа и увеличения турбулентного движения в газе. В результате плотность газа падает ниже критической величины, которая необходима для образования звезд. После прекращения звездообразования начался новый, бесплодный период эволюции Галактики. Он длился примерно 5 миллиардов лет. Но этот период не был периодом бездействия. Эти 5 миллиардов лет ушли на то, чтобы вновь создать такую плотность вещества (газопылевой межзвездной среды), при которой стало бы возможным и образование звезд. Это происходило так. Первоначальное протогалактическое облако, как и все облака, на которое разбилось ранее однородное разлетающееся вещество, вращалось вокруг своей оси с некоторой скоростью. Известно, что если массу вращающегося тела сохранить прежней, а его радиус уменьшить, то скорость вращения тела увеличится. Это могли наблюдать все: вращающийся на льду фигурист, разводя руки в стороны, уменьшает скорость своего вращения, а прижимая их к туловищу — увеличивает ее. Вращающееся протогалактическое облако сжималось, то есть уменьшало свои размеры в радиальном направлении, то есть в плоскости, перпендикулярной оси вращения. В результате скорость его вращения увеличивалась. Но при вращении тела имеет место и еще один эффект, который необходимо учесть. Он возникает в результате действия центробежной силы, которая тем больше, чем больше скорость вращения. Если скорость вращения тела равна нулю, то есть тело не вращается, то и эта сила отсутствует. Действие этой силы также мог наблюдать или чувствовать на себе каждый: она сталкивает человека (или любое тело) с вращающегося круга. Под действием этой силы вещество во вращающейся системе будет выталкиваться наружу, по направлению от оси вращения. Другими словами, в плоскости, перпендикулярной оси вращения, центробежная сила противодействует сжатию облака в результате гравитационного притяжения. Когда эти две силы по абсолютной величине сравняются (направлены они противоположно друг другу), то сжатие облака прекратится. Совсем другая картина будет наблюдаться в перпендикулярном направлении, то есть в направлении оси вращения облака. В этом направлении центробежной силы не возникает, и в этом смысле нет противодействия сжимающей силе гравитационного притяжения. Первоначально сферическое облако начинает сжиматься неодинаково во всех направлениях. В направлении, совпадающем с направлением оси вращения, сжатие облака значительно сильнее, чем в поперечном по отложению к оси направлении. Так первоначальный шар постепенно превращается в блин или, лучше сказать, в диск. На первой стадии образования Галактики, пока облако было очень большим, а скорость вращения — незначительной, этой деформации не произошло. Поэтому первое поколение или, лучше сказать, население звезд распределено в пределах огромного шара. Мало того. Сами эти звезды распределены в пространстве не равномерно, а шарообразными группами. Их так и называют — шаровыми скоплениями звезд. По истечении 7–9 миллиардов лет после образования прото-галактического облака в результате дальнейшего сжатия межзвездного газа образовалась весьма своеобразная система, состоящая из крупного шара и меньшего по размерам диска с совмещенными центрами. Эта система своеобразна не только по конструкции, но и по своей сути. В шаровой, сферической части системы содержится информация о том, какие процессы проходили в начальный период образования и эволюции Галактики. Это своего рода музей Галактики, здесь все сохраняется «неизменным» в течение миллиардов лет. Настоящая же жизнь дисковой части Галактики, можно сказать, только и началась после того, как она сжалась примерно в десять раз и там создались условия, в которых начался процесс образования звезд. Любопытно, что мы можем сейчас наблюдать свою раннюю историю, когда только начала создаваться Галактика из прото-галактического облака, поскольку то же самое происходит сейчас в других частях Вселенной с другими галактиками. Так, близкий рентгеновский квазар, числящийся в каталогах под номером MR 2251 — 178, окружен облаком ионизованного водорода с размерами 230 кпк. Масса всей системы составляет примерно 51011 масс Солнца. Диск в этой системе образуется только через несколько миллиардов лет. На сегодняшний день диск нашей Галактики приобрел следующую структуру. Следует иметь в виду, что диск и шар вставлены друг в друга, поэтому объекты, принадлежащие шару, находятся также в пределах диска. Самая центральная область диска называется ядром. Радиус ее составляет всего 1 пк. Поэтому эту область часто называют просто «центральным парсеком». В этой области центрального парсека содержится несколько миллионов звезд. Плотность звезд здесь в 20 тысяч раз больше, чем в окрестности Солнца. При увеличении радиуса до 600–700 пк мы охватываем вторую область диска, которая получила название «балдж». Здесь плотность звезд велика, поэтому возможны контактные взаимодействия между ними, то есть возможны парные сближения звезд. Но балдж отличается от остального диска не только этим, но и тем, что в этой области физические характеристики звезд отличаются от таковых в сферической части Галактики и в остальной части диска. Соотношение между балджем и диском столь принципиально, что оно может быть положено в основу классификации таких галактик. Балдж характерен тем, что плотность межзвездного газа (молекулярного водорода) здесь намного больше, чем в другой части диска. За пределами балджа вплоть до расстояния в 4 кпк плотность межзвездного газа резко падает. И только на удалении 4 кпк проходит своего рода крепостной вал — «большое галактическое кольцо», «молекулярное кольцо», в котором плотность молекулярного водорода большая. Это кольцо простирается до 6–8 кпк. Диск Галактики состоит из звезд и межзвездного газа. Газовый диск намного больший, чем диск, состоящий из звезд. Он обнаруживается на расстояниях, которые в два-три раза превышают размеры видимого звездного диска. Толщина диска в разных его частях разная. По мере удаления от центра она увеличивается. Это естественно, так как уменьшается вертикальная компонента гравитационной силы в диске. В центральной части диска, на расстояниях менее 4 кпк, толщина диска составляет 100–200 пк. На удалении 14 кпк она доходит до 600 пк. Утолщение диска продолжается и дальше с удалением от центра (вплоть до 30 кпк). Края диска несколько изогнуты. Причина этого изгиба не ясна. Предполагалось, что край диска мог быть притянут силой гравитационного взаимодействия в сторону Магеллановых Облаков. Но это только гипотеза. Возможно, изгиб вызван внутренними причинами (в пределах самой Галактики). Наблюдаются также облака нейтрального водорода, которые падают на диск с огромными скоростями (иногда достигающими 400 км/с). Часть этих облаков приходит извне Галактики. Под углом примерно 70° к галактическому диску наблюдается огромная дуга из газа, которая простирается от Галактики к Магеллановым Облакам. Она состоит из высокоскоростных облаков. Предполагается, что этот поток газа образовался под действием приливных сил, которые «вырвали» газ из Магеллановых Облаков, когда они проходили вблизи Галактики. Очень важным во всех смыслах является вращение Галактики (от него зависит даже судьба нашей цивилизации, но это мы рассмотрим позднее). Оно очень своеобразно. Чем дальше от центра Галактики, тем угловая скорость вращения меньше. То есть диск вращается не как твердотельное вещество, а, грубо говоря, как набор колец с единым центром, вращение которых замедляется по мере удаления от центра. Если на диске имеется какая-либо структура, то она со временем из-за такого вращения должна разрушиться. Также распадется картинка, нарисованная на таком искусственно сделанном диске. Тем не менее хорошо известно, что выраженные структуры в диске Галактики имеются. Они очень стабильны. Это спиральные рукава (или ветви) Галактики. Длительное время оставалось загадочным их существование. В 1928 году Джинс писал: «Каждая неудача при попытках понять происхождение спиральных ветвей делает все более и более трудным делом противостоять подозрению, что в спиральных туманностях действуют совершенно не известные нам силы, быть может, отражающие новые и неожиданные метрические свойства пространства. Предположение, которое настоятельно возникает, состоит в том, что центры туманностей имеют характер «сингулярных точек». В этих точках материя втекает в наш мир из некоторого иного и совершенно стороннего пространства. Тем самым обитателю нашего мира сингулярные точки представляются местами, где непрерывно рождается материя». Астрофизик Хойл также допускал, что спиральные ветви могут образовываться в результате рождения в ядрах галактик материи, которая затем вытекает наружу, образуя спиральные ветви. Над природой спиральных ветвей галактик ломали голову и многие другие ученые первой величины! Разгадка этого явления была найдена в 1964 году астрофизиками Лин Цзя-Цзяо и Ф. Шу, о чем уже говорилось. Образование звезд в диске Галактики происходит в условиях, которые отличаются от существующих в сферическом облаке, когда образовывались первые звезды. Первое отличие состоит в том, что изменилась среда, «тесто», из которого природа сейчас начала создавать звезды. Эта среда стала содержать тяжелые химические элементы. Поэтому и образованные из этой среды звезды принципиально отличались своим химическим составом от звезд первого поколения, которые состояли практически полностью из водорода. Астрофизики используют термин «металлические звезды». Его определяют как относительное количество тяжелых элементов в звезде. Причем под тяжелыми понимают все химические элементы тяжелее водорода и гелия. Для простоты тяжелые элементы называют металлами. Поскольку «тесто», из которого «пеклись» звезды, все время усложнялось (его металличность увеличивалась), так как в него попадали отходы от ранее образованных звезд, то, зная химический состав звезды (ее металличность), можно довольно уверенно определить то время, когда она была «испечена». Астрофизики очень широко используют такую возможность. Это (вместе с другими сведениями) позволяет воссоздать хронологию как нашей Галактики, так и других галактик и объектов. В том числе и ту хронологию, которую мы здесь описываем. На рисунке 7 показаны облака газа и пыли в диске Галактики, как это видно с Земли. Видимый с Земли диск Галактики называют Млечным Путем. Условия звездообразования в диске Галактики отличаются и тем, что здесь становится возможным уплотнение межзвездного газа волнами плотности. Но чтобы это было понятнее, надо рассмотреть, что собой представляет межзвездная среда, из которой рождаются звезды. Основными объектами во Вселенной являются звезды и межзвездная среда. Нельзя говорить о свойствах межзвездной среды (составе, плотности, температуре и т. д.) вообще, так как они очень сильно различаются в зависимости от времени (прошедшего после Большого Взрыва), места в Галактике и во Вселенной, наличия и плотности звезд и т. д. Это и понятно, так как звезды не только образуются из межзвездной среды, но и сами, взрываясь, вносят свое вещество в межзвездную среду. Поэтому она и содержит в себе те же вещества, что и звезды, их наружные слои. Так, межзвездная среда, как и звезды, содержит атомы водорода и гелия и — в значительно меньших количествах — тяжелые химические элементы и молекулярные соединения (СО, ОН и др.). Ясно, что соотношение легких и тяжелых химических элементов зависит от стадии эволюции и места в Галактике. Космическая среда кроме газа содержит и космическую пыль. Это пылинки размером в одну тысячную или десятитысячную миллиметра. Эта пыль составляет примерно один процент от межзвездного газа. Что собой представляет межзвездная среда Галактики в наше время? В гало межзвездный газ и пыль практически отсутствуют. Наибольшая плотность межзвездного газа вблизи галактической плоскости. Но по нашим понятиям его практически нет. Поясним это цифрами. С помощью самых лучших вакуумных установок можно получить настолько разреженный газ (т.e. вакуум), что в каждом кубическом сантиметре его содержится не более 1000 атомов. Плотность межзвездного газа в галактической плоскости в 1000 раз меньше, то eсть там имеется в среднем 1 атом в одном кубическом сантиметре. Толщина газопылевого слоя Галактики составляет примерно 250 пк. Он имеет клочковатую структуру. В облаках плотность вещества в десятки раз больше, чем между ними. Газопылевые облака сосредоточены более плотно в спиральных рукавах Галактики. Наиболее плотные из этих облаков наблюдаются нами как туманности (темные или светлые). В Галактике межзвездный газ составляет примерно 1 % полной массы Галактики. В других галактиках это соотношение иное. Так, у эллиптических галактик на межзвездный газ приходится всего сотая доля процента всей массы. В то же время в неправильных звездных системах (примером такой системы являются Магеллановы Облака) на межзвездный газ может приходиться до половины массы всей системы. Космическая пыль поглощает свет, поэтому становится невозможно вести наблюдения в видимом свете там, где пыли много. В нашей Галактике это относится к галактической плоскости и к ее окрестностям. Здесь мы можем изучать объекты (в том числе и межзвездную среду) только с помощью других излучений (ультрафиолетового, гамма, радио). Значительную часть межзвездного газа составляет молекулярный водород. Вокруг горячих звезд на десятки парсек водород ионизован ультрафиолетовым излучением звезд. Образованные ионы водорода излучают линию НII в видимом участке спектра (красную линию). Эти области, в которых температура достигает 10 тысяч К, были названы «зонами HII». За пределами этих зон молекулярный водород не ионизован. Температура его всего около 100 К. Он излучает в линии HI, поэтому области, занятые им, были названы «зонами HI». Газ в этих зонах также неоднороден, он состоит из облаков с размерами в десятки парсек. Облака содержат кроме молекулярного водорода и окись углерода. С помощью радиоастрономии был открыт корональный межзвездный газ, температура которого достигает миллиона градусов. Он обнаруживается также в далеком ультрафиолетовом излучении. Этот горячий газ создан вспышками Сверхновых II типа. Области горячего коронального газа существуют десятки миллионов лет. Отдельные такие области (каверны) соединяются туннелями горячего газа. Межзвездная среда содержит также изолированные темные облака, сильно поглощающие свет. Они очень холодные. Их температура составляет около 10 К (то есть около –263 °C). Вещество облаков находится в основном в молекулярной форме. Ядро облака может иметь плотность, достигающую 10 тысяч частиц в кубическом сантиметре. Наблюдаются и более массивные молекулярные облака, внутри которых имеются самые яркие звезды. Плотность в ядрах этих облаков может составлять миллион, а иногда даже миллиард частиц в кубическом сантиметре. Имеются и гигантские молекулярные облака, название которых говорит само за себя. Их размеры составляют десятки парсек, иногда они превышают сотню парсек, как в случае туманности Ml 7, размер которой 170 пк. Массы таких облаков превышают массу Солнца в десять — сто тысяч раз. Они, естественно, состоят из молекулярного водорода. |
|
||
Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх |
||||
|