|
||||
|
Часть 3. Экология экосистем При популяционном подходе эколог ставит задачей выяснить причины, которые объясняют распределение популяций в пространстве, их размер, динамику и другие признаки. При экосистемном подходе перед исследователем стоит более сложная задача – изучить процессы трансформации вещества и потоки энергии в экосистеме, которые происходят при участии организмов. Глава 10. Концепция экосистемы Р. Линдеман (Lindeman, 1942) рассматривал экосистему как «…систему физико-химико-биологических процессов, протекающих в пределах некоторой пространственно-временной единицы любого ранга». Несмотря на такую функциональную направленность экосистемного подхода, большое значение имеет изучение видового состава экосистем и их пространственной и временной структуры. В этих внешних признаках проявляется сущность процессов трансформации вещества и энергии. 10.1. Определение экосистемы Понятие «экосистема» предложил А. Тенсли в 1935 г., однако как отмечает А.М. Гиляров, «…четкого общепринятого определения экосистемы не существует, но обычно считается, что это совокупность разных обитающих вместе организмов, а также физических и химических компонентов среды, необходимых для их существования или являющихся продуктами их жизнедеятельности» (1990, с. 5). К настоящему времени сложилось два понимания экосистемы: узкое и широкое. При узком (традиционном) понимании как экосистемы рассматривают только такие совокупности организмов и условий среды, в которых имеется режим саморегуляции. При таком понимании к экосистемам относятся естественные леса, озера, массивы болот, моря и т.д. Если эти экосистемы нарушить (разумеется, до определенного предела), то они восстановят себя если не в прежнем составе, то, во всяком случае, в близком к прежнему. Узкий объем понятия экосистемы первичен и уходит корнями в представления А. Тенсли. При широком понимании (Одум, 1986) к экосистемам относятся любые совокупности взаимодействующих организмов и условий среды их обитания вне зависимости от того, имеется в них механизм саморегуляции или нет. В этом случае как экосистема может быть рассмотрен город, сельскохозяйственная ферма, лесопосадка, кабина космического корабля и т.д. В учебнике принято широкое понимание экосистемы как более удобное. Экосистема не имеет территориального ранга. К числу экосистем могут быть отнесены муравейник, овраг, озеро, горный хребет, Тихий океан, евроазиатский материк, биосфера. Возможно построение иерархии экосистем: внутри крупной экосистемы могут быть выделены экосистемы более низких рангов. К примеру, в черте городской экосистемы выделяются экосистемы селитебной территории, лесопарка, крупных предприятий. Следует специально остановиться на соотношении понятий «экосистема», «биогеоценоз» и «ландшафт». Они имеют «параллельное хождение» в науке и их объем перекрывается. Понятие «биогеоценоз» в 1942 г. было предложено В.Н. Сукачевым первоначально в противовес понятию «экосистема», которое в соответствии с менталитетом науки этого времени считалось буржуазным. Однако со временем стало очевидно, что понятие «биогеоценоз» не может заменить понятие «экосистема». Если экосистема – понятие безранговое, то биогеоценоз имеет определенный ранг: это однородный участок наземной (но не водной!) экосистемы, границы которого проведены по границам фитоценоза, выступающего в роли маркера этой единицы. Географический ландшафт также соответствует экосистеме определенного ранга – достаточно крупному однородному географическому единству (с одним типом рельефа и климата, закономерным сочетанием почв и растительности), в пределах которого выделяются более дробные экосистемные единицы – урочища («подландшафты») и фации (соответствуют биогеоценозам). Определенным рангом экосистемы является и широко используемое в отечественной географии понятие «природно-территориальный комплекс» (ПТК). Контрольные вопросы1. Что отличает экосистемный подход в экологии от популяционного? 2. Расскажите об узкой и широкой трактовке понятия «экосистема». 3. Каково соотношение объемов понятий «экосистема», «биогеоценоз», «географический ландшафт», «урочище», «фация», «ПТК»? 10.2. Функциональные блоки экосистемы Несмотря на то, что в составе экосистемы могут быть тысячи видов, по функциональной роли эти виды можно объединить в ограниченное число функциональных типов – продуцентов, консументов и редуцентов, которые различал еще АЛавуазье (без использования этих терминов). Эти типы хрестоматийны и потому ограничимся их краткой характеристикой. Продуценты – это автотрофы, т.е. организмы, синтезирующие органические вещества из неорганического углерода. Продуценты-фотоавтотрофы – растения. Кроме того, в океане важную роль также играют цианобактерии. Фотоавтотрофы осуществляют фотосинтез из углекислого газа и воды с выделением кислорода, используя солнечную энергию. В состав этой разнообразной группы организмов входят гиганты, подобные секвойе и эвкалипту, и микроскопические планктонные водоросли, являющиеся основными продуцентами водных экосистем. Цианобактерии способны, кроме того, фиксировать атмосферный азот. Существуют и продуценты-фотоавтотрофы, которые осуществляют фотосинтез без выделения кислорода (пурпурные бактерии), однако их общий вклад в биологическую продукцию экосистемы невелик. Продуценты–хемоавтотрофы (серобактерии, метанобактерии, железобактерии, бактерии-нитрификаторы и др.) для синтеза органических веществ используют химическую энергию окисления неорганических соединений. Эти организмы являются продуцентами экосистем в гидротермальных оазисах, образующихся в так называемыхрифтовых зонах океана – областях разлома земной коры, из трещин, образующихся между плитами, выделяется сероводород, и в экосистемах подземных вод. Они играют важную роль в биогеохимическом преобразовании земной коры (обитают в подземных водах на глубине до 3-5 км). К этой же группе относятся почвенные бактерии-нитрификаторы, которые окисляют аммоний и нитриты. Консументы — это организмы, которые используют готовое органическое вещество в живом или мертвом состоянии. Этот блок включает следующие функциональные группы. Фитофаги — растительноядные организмы. Эта разнообразная группа в наземных экосистемах включает самые разные таксоны – от насекомых (например, термитов, которые являются основными фитофагами в тропических лесах) до крупных млекопитающих, подобных лосю, жирафу и слону. В водных экосистемах основными фитофагами являются мелкие организмы зоопланктона (так называемый растительноядный планктон). Зоофаги — хищники. Как и фитофаги, зоофаги варьируются от крупных (лев, волк) до микроскопических (рачки зоопланктона). Хищники разделяются на типичных хищников, которые убивают жертву (например, волк или сокол), и хищников с пастбищным типом питания, которые, не убивая жертву, используют ее длительное время (например, оводы, слепни). Паразиты – организмы, длительное время живущие внутри или на теле другого организма – хозяина и питающиеся за его счет (см. 8.5). Симбиотрофы – микроорганизмы (грибы, бактерии, одноклеточные простейшие), которые связаны отношениями взаимовыгодного сотрудничества с растениями или животными (грибы микоризы, клубеньковые бактерии бобовых, бактерии и простейшие (амебы) пищеварительного тракта млекопитающих, включая человека). Они питаются прижизненными выделениями организмов (у растений) или участвуют в пищеварении (у животных). Детритофаги – это животные, питающиеся детритом (мертвыми тканями растений и животных или экскрементами). Разнообразие этих организмов было рассмотрено в разделе 8.7. Редуценты (деструкторы) – это бактерии и грибы, которые в ходе жизнедеятельности превращают органические остатки в неорганические вещества, обеспечивая возвращение содержащихся в них элементов в почвенный раствор или в воду (в водных экосистемах), откуда они повторно потребляются растениями. Благодаря редуцентам в атмосферу возвращается большая часть углекислого газа, потребленного в процессе фотосинтеза, а также образуется метан при анаэробном разложении органического вещества в условиях повышенной влажности. Разделение организмов, питающихся мертвым органическим веществом (сапротрофов), на детритофагов и редуцентов условно. Так до 40% бактерий водных экосистем, образующих бактериальный планктон, поедается в живом состоянии, т.е. являются не редуцентами, а детритофагами. Они не поставляют ресурсы для растений, а сами являются пищевым ресурсом для консументов следующего трофического уровня (т.е. с них начинаются детритные пищевые цепи). Животные-детритофаги, размельчая органические остатки, облегчают «работу» редуцентов и тем самым участвуют в процессе разложения органического вещества. Наконец, любой детритофаг является еще и «хищником», поскольку, по словам М. Бигона, “питается сухим печеньем, намазанным арахисовым маслом» (потребляет мертвое органическое вещество вместе с поселившимися на нем живыми бактериями). Контрольные вопросы1. Охарактеризуйте основные функциональные типы организмов, входящих в состав экосистемы. 2. Расскажите о разнообразии консументов. 3. Чем отличаются типичные хищники от хищников с пастбищным типом питания? 3. В чем заключается условность разделения детритофагов и редуцентов, детритофагов и хищников? 10.3. Классификация экосистем При широком объеме понятия «экосистема» оно становится родовым, в рамках которого устанавливается несколько видов (типов) экосистем, различающихся по источнику энергии и функциональной структуре, а также по вкладу в их организацию человека (табл. 9). Таблица 9 Классификация экосистем По типу обеспечения энергией и источнику углерода экосистемы разделяются на автотрофные и гетеротрофные. В состав автотрофных экосистем входят продуценты, которые обеспечивают веществом и энергией гетеротрофную биоту экосистемы. В составе гетеротрофных экосистем продуцентов нет, или они играют незначительную роль, и органические вещества поступают в них извне. Таким образом, существование гетеротрофных экосистем всегда зависит от деятельности автотрофных экосистем, так как иного органического вещества, кроме как произведенного организмами автотрофных экосистем, быть не может. Это органическое вещество может быть детритом, представляющим биологическую продукцию не только современных экосистем, но и экосистем, которые существовали в далеком прошлом (уголь, нефть, газ). Впрочем, это разделение довольно условно. Существуют автотрофно-гетеротрофные экосистемы. В этих экосистемах, наряду с солнечной энергией и неорганическим углеродом, используемыми продуцентами, значительную роль играет энергия, фиксированная в «готовом» органическом веществе, поступающем извне (например экосистемы небольших лесных озер, в которые падают листья и другой лесной детрит; озера, в которые поступают органические вещества со стоками). Разделение экосистем на естественные и искусственные (антропогенные), создаваемые человеком, также относительно. Например интенсивно используемое пастбище является одновременно естественным и искусственным: устойчивые к выпасу виды отобрались из естественной луговой или степной экосистемы, но под влиянием хозяйственной деятельности человека. Человек влияет даже на заповедные экосистемы, получающие свою долю кислотных дождей и других загрязняющих веществ, которые переносятся в атмосфере на большие расстояния. Тем не менее принято считать естественными экосистемами те, в которых вклад естественных факторов, определяющих их состав, выше, чем влияние человека. Контрольные вопросы1. Разъясните содержание основного подхода для классификации экосистем по источнику энергии и роли человека. 2. Приведите примеры экосистем, которые представляют переход от естественной к антропогенной. 3. Приведите примеры естественных гетеротрофных экосистем. 4. Охарактеризуйте разнообразие антропогенных экосистем. 5. Приведите примеры экосистем, которые представляют переход от автотрофной к гетеротрофной. 10.4. Энергия в экосистеме. Пищевые цепи Основу «работы» экосистемы составляют два связанных процесса: круговорот веществ, который осуществляется благодаря деятельности продуцентов, консументов и редуцентов, и протекание через нее потока энергии, поступающей извне. Энергия используется однократно и расходуется на «раскручивание» круговоротов веществ. Круговороты веществ в конкретной экосистеме и биосфере имеют сходную природу, и потому мы рассмотрим их в главе 13. В этом разделе мы познакомимся с закономерностями протекания энергии через экосистему. Физики определяют энергию как способность производить работу или теплообмен между двумя объектами, обладающими разной температурой. Энергия является основой «работы» любой экосистемы, в которой происходят синтез и многократные преобразования веществ. Основным источником энергии является Солнце. Даже гетеротрофные экосистемы используют солнечную энергию, хотя и через посредника, в роли которого выступает автотрофная экосистема, поставляющая для нее органические вещества. Ю. Одум (1986) даже определил экологию как науку, которая «…изучает связь между светом и экологическими системами и способы превращения энергии внутри экосистемы» (с. 106). Поток солнечной энергии постоянно протекает через фотоавтотрофные организмы, причем при передаче энергии от одного организма к другому в пищевых цепях происходит ее рассеивание в виде тепла. Из поступающей на Землю энергии Солнца экосистемой усваивается не более 2% (в экспериментальных культурах морских планктонных водорослей удалось достичь уровня фиксации солнечной энергии 3,5%). Большая часть энергии используется на транспирацию, отражается листьями, идет на нагревание атмосферы, воды и почвы (см. 2.2.2). Последовательность организмов, в которой каждый предыдущий организм служит пищей последующему, называется пищевой цепью. Каждое звено такой цепи представляет трофический уровень (растения, фитофаги, хищники I порядка, хищники II порядка и т.д.). Различают два типа пищевых цепей: пастбищные (автотрофные), в которых в качестве первого звена выступают растения (трава – корова – человек; трава – заяц – лисица; фитопланктон – зоопланктон – окунь – щука и др. ), и детритные (гетеротрофные), в которых первое звено представлено мертвым органическим веществом, которым питается детритофаг (опавший лист – дождевой червь – скворец – сокол). Количество звеньев в пищевых цепях может быть от одного–двух до пяти–шести. Пищевые цепи в водных экосистемах, как правило, более длинные, чем в наземных. Поскольку большинство организмов имеет широкую диету (т.е. может использовать в пищу организмы разных видов), то в реальных экосистемах функционируют не пищевые цепи, а пищевые сети. По этой причине пищевая цепь – это упрощенное выражение трофических отношений в экосистеме. Эффективность передачи энергии по пищевой цепи зависит от двух показателей: 1. от полноты выедания (доли организмов предшествующего трофического уровня, которые были съедены живыми); 2. от эффективности усвоения энергии (удельной доли энергии, которая перешла на следующий трофический уровень в пересчете на каждую единицу съеденной биомассы). Полнота выедания и эффективность усвоения энергии возрастают с повышением трофического уровня и меняются в зависимости от типа экосистемы. Так в лесной экосистеме фитофаги потребляют менее 10% продукции растений (остальное достается детритофагам), а в степи – до 30%. В водных экосистемах выедание фитопланктона растительноядным зоопланктоном еще выше – до 40%. Этим объясняются основные краски Земли на космических снимках: леса зеленые именно потому, что фитофаги съедают мало фитомассы, а океан голубой, оттого что фитофаги выедают достаточно много фитопланктона (Polis, 1999). С повышением трофического уровня полнота выедания еще более возрастает, хищники высших порядков выедают до 90% своих жертв, и потому доля животных, которым удается дожить до естественной смерти, очень невелика. В водных экосистемах, к примеру, в детрит переходит 100% биомассы хищных рыб (их есть некому и плотность популяции контролируют только паразиты), но лишь 1/4 часть биомассы планктоноядных рыб, которые умерли «своей смертью». Этот детрит опускается на дно. Лишь часть его поедается детритофагами бенотоса, а остальная – попадает в донные осадки. Доля детрита, поступающего в осадки, тем больше, чем выше продуктивность водной экосистемы. При оценке коэффициента усвоения энергии в пищевых цепях часто используют «число Линдемана»: с одного трофического уровня на другой в среднем передается 10% энергии, а 90% – рассеивается. Однако это «число» чрезмерно упрощает и даже искажает реальную картину. «Закон 10%» действует только при переходе энергии с первого трофического уровня на второй, и то не во всех случаях. Эффективность усвоения энергии в следующих звеньях пищевой цепи – от фитофагов к зоофагам или к хищникам высших порядков – может достигать 60%. Высокой эффективностью усвоения энергии в «плотоядных» звеньях пищевых цепей объясняется сравнительно небольшое количество экскрементов хищников и ограниченность состава сапротрофов (редуцентов, копрофагов), питающихся ими. Основная фауна копрофагов связана с экскрементами растительноядных животных. Кстати, о том, что при хищничестве эффективность усвоения энергии выше, чем при фитофагии, знает каждый из личного опыта: вегетарианский обед из овощей или картофеля велик по объему, но малокалориен, а сравнительно небольшой по весу бифштекс утолит голод и надолго обеспечит ощущение сытости. Таким образом, в пищевой цепи на каждом следующем трофическом уровне относительное количество передаваемой энергии возрастает, так как одновременно увеличивается и потребление живой биомассы, и ее усвоение (уменьшается доля биомассы, которая возвращается в экосистему с экскрементами). Поведение энергии подчиняется действию первого и второго законов термодинамики. Первый закон (сохранения энергии) – о сохранении ее количества при переходе из одной формы в другую. Энергия не может появиться в экосистеме сама собой, она поступает в нее извне с солнечным светом или вследствие химических реакций и усваивается продуцентами. Далее она будет частично использована консументами и симбиотрофами, «обслуживающими» растения, частично – редуцентами, которые разлагают мертвые части растений, и частично – затрачена на дыхание. Если суммировать все эти фракции расхода энергии, усвоенной растениями в фотоавтотрофной экосистеме, то сумма будет равна той потенциальной энергии, которая накоплена при фотосинтезе. Второй закон – о неизбежности рассеивания энергии (т.е. снижения ее «качества») при переходе из одной формы в другую. В соответствии с этим законом энергия теряется при ее передаче по пищевым цепям. В наиболее общем виде эти потери отражает «число Линдемана». Контрольные вопросы1. Что такое энергия? 2. Какое количество солнечной энергии может усвоить экосистема? 3. Что такое пищевая цепь? 4. Что такое трофический уровень? 5. Приведите примеры пастбищных и детритных пищевых цепей. 6. Из какого числа звеньев состоят пищевые цепи в наземных и водных экосистемах? 7. Чем отличаются понятия «пищевая цепь» и «пищевая сеть»? 8. В каких пределах меняется полнота выедания организмов на разных трофических уровнях и в разных экосистемах? 9. Как меняется эффективность усвоения энергии организмами с повышением их трофического уровня? 10. Проиллюстрируйте действие законов термодинамики при «работе» экосистемы. 10.5. Детрит в экосистеме Детрит – мертвое органическое вещество, временно исключенное из биологического круговорота элементов питания. Время сохранения детрита может быть коротким (трупы и экскременты животных в теплом климате перерабатываются личинками мух за несколько дней, листья в лесу – за несколько месяцев, стволы деревьев – за несколько лет) или очень долгим (гумус, сапропель, торф, уголь, нефть). Детрит – запасник питательных веществ в экосистеме, необходимая составляющая ее нормального функционирования. Как уже отмечалось, существуют специальные организмы – детритофаги, которые питаются детритом. Рассмотрим основные виды детрита. Гумус – темноокрашенное органическое вещество почвы, которое образуется в результате биохимического разложения растительных и животных остатков и накапливается в верхнем (гумусовом) почвенном горизонте. Большая часть гумуса (85-90%) представлена собственно гумусовыми веществами – гумином, фульвокислотами, гуминовыми кислотами и др., остальное – менее разложившимися растительными и животными остатками. Содержание углерода в гумусе составляет около 50%. Количество гумуса поддерживается двумя противоположно направленными микробиологическими процессами – гумификацией (анаэробный процесс превращения остатков животных и растений в гумус) и минерализацией (аэробный процесс разрушения гумуса до простых органических и минеральных соединений). В почвах естественных экосистем эти процессы находятся в равновесии, и содержание гумуса в почве поддерживается постоянным. Гумус – основа плодородия почвы. При вмешательстве человека (например при вспашке почвы) процессы минерализации начинают преобладать, что ведет к снижению содержания гумуса и поступлению в атмосферу диоксида углерода, который вносит существенный вклад в усиление парникового эффекта (см. 13.2.1). Разные типы почв отличаются содержанием гумуса и мощностью гумусового горизонта. Наиболее богаты гумусом черноземы, его содержание в этих почвах может достигать 10% (в прошлом в отдельных районах РФ и Украины оно достигало 16%), а мощность гумусового горизонта – 1 м. Наиболее бедны гумусом подзолистые и каштановые почвы. Мощность гумусового горизонта у них составляет 5–15 см, а содержание гумуса – 1–2%. Переходное положение между подзолистыми почвами и черноземами занимают серые лесные почвы, а между черноземами и каштановыми – темнокаштановые. В расположенных южнее каштановых бурых пустынных почвах содержание гумуса составляет менее 1%. Очень богаты гумусом почвы влажных местообитаний – луговые и влажнолуговые. В разных типах почв гумус различается по подвижности: наиболее трудно минерализуется гумус черноземов (В.В. Докучаев назвал за это черноземы «скупым рыцарем»), а наиболее легко – в почвах тропических влажных лесов. Запас гумуса в тропических почвах невелик (мощность гумусового горизонта составляет несколько сантиметров, а содержание гумуса в нем – не более 4%), тем не менее за счет быстрого круговорота веществ эти экосистемы дают высокую биологическую продукцию (см. 10.6). Лесная подстилка – слой детрита на поверхности лесной почвы, образованный в основном опавшими листьями и веточками деревьев. Подстилка играет важную роль в жизни лесной экосистемы. В подстилке сконцентрировано значительное число видов-детритофагов, а также редуцентов, представленных в основном грибами. Подстилка впитывает влагу дождей и тающего снега, что уменьшает поверхностный сток воды, а в горных лесах снижает вероятность развития эрозии почвы. Подстилка играет роль фильтра, который задерживает вещества, содержащиеся в воде (остатки удобрений, пестицидов, тяжелые металлы и т.д.). По этой причине вода лесных родников всегда достаточно чистая. По своей роли в экосистеме к лесной подстилке близка ветошь – сухие побеги растений в степи (степной войлок). Отношение массы лесной подстилки (или ветоши в травяных сообществах) к годовому опаду листьев и веток служит показателем скорости разложения детрита. Чем выше этот индекс, тем ниже интенсивность круговорота веществ. Запас опада (т/га) и индекс скорости его разложения (годы) составляют: в тундрах – 44 (50), в тайге – 14 (10–17), в широколиственных лесах 14 (3–4), в саванне – 3 (1), в степи – 3 (2), во влажных тропических лесах – 3 (0,1). Торф – это слабо разложившиеся растительные остатки, которые накапливаются в болотной экосистеме. Под микроскопом нетрудно идентифицировать остатки растений видам, сформировавшим торф. Болота разных типов формируют торф разной степени богатства минеральными и органическими веществами. Наиболее богат минеральными веществами торф низинных болот, наиболее беден – верховых. Донные осадки (сапропель) – отложения на дне континентальных водоемов, которые состоят из органических остатков, смешанных с минеральными осадками. В отличие от гумуса, который постоянно участвует в круговороте веществ в экосистеме, донные осадки – достаточно консервативное образование, в круговороте участвует лишь самая верхняя их часть, слой толщиной не более 5 см, а весь остальной детрит практически исключается из круговорота. Это, кстати, объясняет феномен самоочищения водоемов: загрязняющие вещества, попав на дно с умершим планктоном, захораниваются там и не вовлекаются в круговорот. Значительное накопление органического вещества на дне озер происходит только там, где создается анаэробная зона, в которой бактерии расходуют весь кислород и скорость минерализации органического вещества резко снижается. Вероятность возникновения дефицита кислорода в воде тем выше, чем продуктивнее экосистема (см. 11.1). На дне водохранилищ, созданных на реках, интенсивно загрязняемых городами и промышленными предприятиями, «законсервированы» огромные массы токсичных осадков, что, кстати, служит основным аргументом против ликвидации этих водохранилищ. Контрольные вопросы1. Какую роль играет детрит в экосистеме? 2. Перечислите основные формы детрита. 3. Как меняется содержание гумуса в разных почвах? 4. Какую функциональную роль в лесной экосистеме выполняет подстилка? 5. Какие факторы способствуют накоплению донных осадков? 10.6. Биологическая продукция и запас биомассы Биологическая продукция – скорость накопления биомассы в экосистеме, отражающая способность организмов производить органическое вещество в процессе своей жизнедеятельности. Биологическая продукция измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади (т/га/год, кг/кв. м/год, г/кв. м/день и т.д.). Различают первичную (создаваемую растениями и другими автотрофами) и вторичную (создаваемую гетеротрофами) биологическую продукцию. В составе первичной продукции различается валовая (т.е. общая продукция фотосинтеза) и чистая биологическая продукция – «прибыль», которая остается в растениях после затрат на дыхание и выделение органического вещества из корней в почву (эти вещества используются симбиотрофами) и водорослями фитоплактона в воду (эти вещества усваиваются бактериями). Соотношение валовой и чистой первичной биологической продукции зависит от благоприятности условий среды: чем условия лучше, тем затраты на дыхание и содержание «обслуживающего персонала» ниже. В благоприятных условиях чистая продукция может составлять до 50% от валовой, в неблагоприятных – 5-10% (Рахманкулова, 2002). Р. Уиттекер (1980) по первичной биологической продукции (в сухом веществе) разделяет экосистемы на четыре класса: – очень высокая (свыше 2 кг/м 2 в год). Такая продукция характерна для влажных тропических лесов, коралловых рифов, геотермальных «оазисов» рифтовых зон глубоководий океана, плавней – высоких и густых зарослей тростника в дельтах Волги, Дона и Урала; – высокая (1–2 кг/м 2 в год). Это липово-дубовые леса, прибрежные заросли рогоза или тростника на озере, посевы кукурузы и многолетних трав, если используются орошение и минеральные удобрения; – умеренная (0,25–1 кг/м 2 в год). Преобладающая часть сельскохозяйственных посевов, сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера, «морские луга» из водорослей; – низкая (менее 0,25 кг/м 2 в год). Это пустыни жаркого климата, арктические пустыни островов Северного Ледовитого океана, тундры, полупустыни Прикаспия, вытоптанные скотом степные пастбища с низким и редким травостоем, каменистые степи. Такую же низкую продукцию имеет большинство морских экосистем зоны пелагиали (см. 11.2). Средняя биологическая продукция экосистем Земли не превышает 0,3 кг/м 2 в год, так как на планете преобладают низкопродуктивные экосистемы пустынь и океанов. Биомасса – это запас (количество) живого органического вещества (растений, животных, грибов, бактерий), «капитал» экосистемы, который разделяется на фитомассу (массу растений), зоомассу (массу животных), микробную массу. Средняя биомасса на единице поверхности суши составляет 0,5 кг/га. Основной химический элемент в биомассе – углерод, 1 г органического углерода соответствует в среднем 2,4 г сухой биомассы. В биомассе на 100 частей углерода приходится 15 частей азота и 1 часть фосфора. Однако соотношение углерода и азота различается в биомассах животных и растений, что и объясняет их разное качество как пищевого ресурса (см. 2.2.1). Кроме углерода, азота и фосфора, в биомассе содержится много кислорода, водорода и серы. (Вспомните слово «CHNOPS», см. 2.2.1.) Поскольку длительность жизни разных организмов различна, то биомасса может быть больше годичной продукции (в лесах – в 50 раз, в степи – в 3-5 раз), равна ей (в сообществах культурных однолетних растений) или меньше (в водных экосистемах, где преобладают короткоживущие организмы планктона, дающие несколько поколений за год). Обычно биомасса растений больше биомассы животных, хотя из этого правила есть исключения. Например в водоемах масса зоопланктона может быть больше массы фитопланктона, так как жизнь водорослей фитопланктона менее продолжительна, чем жизнь организмов зоопланктона (за время жизни планктонного рачка может смениться до 4 поколений водорослей). Соотношение величины биомассы разных трофических уровней отражается экологическими пирамидами. Пирамиды биомассы наземных экосистем всегда имеют широкое основание и сужаются с повышением трофического уровня. Пирамиды биомассы водных экосистем могут иметь форму юлы (рис. 20): максимальная биомасса сосредоточена в среднем трофическом уровне зоопланктона, организмы которого живут дольше, чем одноклеточные водоросли фитопланктона. На высших уровнях нектона (рыб) также происходит снижение биомассы. Рис. 20. Экологические пирамиды биомассы наземной и водной экосистем. В структуре биомассы различают биомассу надземной и подземной части экосистемы. В большинстве экосистем подземная биомасса растений превышает надземную, причем у луговых сообществ в 3–10 раз, в степных в 30–50, в пустынных в 50–100 раз. Исключение составляют леса, где надземная биомасса значительно превышает подземную. Подземная биомасса животных всегда во много раз больше, чем надземная. В агроценозах надземная и подземная биомасса могут быть примерно равными, а в лесах надземная биомасса превышает подземную. Круговорот органического вещества в биосфере происходит в среднем за 4 года. В разных экосистемах этот показатель сильно различается: в водных экосистемах круговорот происходит в 1000–2000 раз быстрее, чем в лесу. Контрольные вопросы1. Что такое первичная и вторичная биологическая продукция? 2. Как различается величина первичной и вторичной биологической продукции в разных экосистемах? 3. В каких пределах меняется биологическая продукция разных экосистем? 4. Какова средняя величина биологической продукции экосистем Земли? 5. Сравните понятия «биологическая продукция» и «биомасса». 6. Как меняется соотношение биологической продукции и биомассы в разных экосистемах? 7. Каков усредненный химический состав биомассы планеты? 8. Что такое экологическая пирамида? Какие варианты экологических пирамид Вы знаете? 9. Сравните экологические пирамиды наземной и водной экосистемы. 10. С какой скоростью происходит круговорот биомассы в разных экосистемах? 10.7. Состав биоты (биоразнообразие) экосистемы Несмотря на то, что для эколога экосистема – это в первую очередь явление функциональное, которое оценивается по интенсивности потока энергии, протекающей через нее, характеру круговоротов веществ, величине биологической продукции (первичной и вторичной), важную роль играет изучение биоты – живого населения экосистемы, в которой в конечном итоге отражается ее функция. Биота большинства экосистем имеет сложный состав, представленный большим числом разных таксонов. К примеру, биота наземных экосистем включает растения (низшие и высшие), огромное разнообразие видов животных, грибов и бактерий. Это разнообразие в принципе можно учесть, но никто никогда этого не делал. Чтобы осуществить полный учет биоты только одной экосистемы, потребуется участие в работе нескольких десятков специалистов по разным таксонам растений (мхов, споровых сосудистых, голосеменных, цветковых), грибов, лишайников, животных (разные группы простейших, насекомых, птиц, млекопитающих и т.д.), бактерий. Результат работы такой научной команды будет стоить очень дорого, а его научная значимость окажется невысокой (так как будет не более чем иллюстрацией, представляющей всего лишь одну из экосистем). Затраты на изучение многих экосистем для выявления общих закономерностей связи биоразнообразия с условиями среды будут нереально высокими. Обычно биоразнообразие экосистемы определяют примерно по числу входящих в нее видов растений, т.е. по видовому богатству растительных сообществ. В разных экосистемах число видов гетеротрофов, связанных с одним видом растений, возрастает от нескольких десятков до нескольких сотен. Несмотря на то, что такие «валовые» данные очень приблизительны, принцип «разнообразие порождает разнообразие» является основным для общей количественной оценки биоты экосистем. Впрочем, вопрос о закономерностях формирования видового богатства растительных сообществ, на основании которого «прикидывают» состав гетеротрофов (консументов и редуцентов), однозначно решить не удается. Р. Уиттекер (1980) писал о том, что видовое богатство – наиболее трудно прогнозируемая характеристика растительного сообщества. Основные факторы, которые влияют на видовое богатство разных растительных сообществ и, соответственно, на экосистемы, следующие. 1. “Пул”, т.е. потенциальный запас видов в данном районе, общее богатство флоры, из состава которой могут отбираться виды для формирования того или иного сообщества. 2. Благоприятность условий для произрастания растений, формирующих фитоценоз («инвайронментальное сито»). 3. Переменность режимов среды. При меняющихся режимах среды (в первую очередь увлажнения) видовое богатство повышается. Этим объясняется очень высокое видовое богатство северных степей (более 100 видов растений на 1 м 2 ). 4. Наличие растения-виолента. При его появлении видовое богатство резко снижается. Пример тому – буковые леса, почти лишенные напочвенного покрова, и бедные видами сообщества тростника в дельтах рек. 5. Режим нарушений. Умеренный режим нарушений препятствует усилению роли виолентов и тем самым способствует повышению видового богатства (гипотеза «высокого видового богатства при умеренных нарушениях»). 6. “Карусели” (van der Maarel, Sykes, 1993) – мелкомасштабные циклические изменения сообществ, в ходе которых несколько видов со сходной конкурентной способностью поочередно занимают одну и ту же экологическую нишу. «Карусели» наиболее наглядны в лесных сообществах: при выпадении отдельных видов деревьев формируются «окна» со своим специфическим видовым составом. 7. Время (возраст экосистемы). Для того, чтобы в сообществе собрались все виды, которые потенциально могут в нем произрастать, необходимо определенное время. Это универсальный фактор, действующий в любом сообществе, но в разном «биологическом времени». Все перечисленные факторы формирования видового богатства взаимодействуют, чем и объясняется сложность прогноза видового богатства, о которой писал Р. Уиттекер. Он выделял главные географические широтные и высотные градиенты видового разнообразия, которое нарастает от высоких широт к низким и от высокогорий к равнинам. В современном мире наблюдается тенденция снижения видового богатства экосистем из-за усиливающегося влияния на них человека. Поэтому существование многих видов находится под угрозой. Контрольные вопросы1. Почему сложно получить данные о полном составе биоты разных экосистем? 2. Как можно примерно оценить биологическое разнообразие экосистемы? 3. Какие факторы влияют на биологическое разнообразие растительных сообществ и экосистем? 10.8. Связь биоразнообразия с функциональными параметрами экосистемы Для проблемы охраны биоразнообразия важен вопрос о его связи с функциональными характеристиками экосистем. Есть мнение, что количество видов в экосистемах «избыточно», так как число функциональных ролей ограничено и всегда больше, чем число их исполнителей. Все растения, к примеру, являются продуцентами-фототрофами, хотя работают по-разному, так как имеют разные экологические ниши (см. 9.2). Однако занимать одну нишу могут несколько видов. Например исчезновение зубчатого каштана в американских широколиственных лесах (см. 8.5) практически не повлияло на функциональные параметры этих экосистем: ниша каштана была занята другими видами широколиственных деревьев, которые вносят такой же вклад в первичную биологическую продукцию, что и каштан. В поймах рек европейской части России исчезнувший вяз заместился другими видами деревьев. Почти любое растение может быть потреблено различными фитофагами, а диета у большинства фитофагов в свою очередь широкая, т.е. они могут питаться разными видами. Все это в конечном итоге и породило мнение экологов-технократов (особенно американских корнукопианцев, от cornu-copio – рог изобилия) о том, что число видов избыточно и при потере даже 1/3 биологического разнообразия не произойдет никакой экологической катастрофы. Вопрос о том, избыточно ли биоразнообразие в экосистемах или нет, не имеет однозначного решения, так как разные виды играют в разных экосистемах разную роль. Среди видов могут быть «ключевые», которые незаменимы, так как определяют функциональные параметры экосистемы – доминанты, образующие большую биомассу, или «контролеры» популяций этих доминантов (паразиты, фитофаги, хищники, мутуалы). Все прочие виды – «заменимы», их исчезновение и замещение другими видами не сказывается на продуктивности экосистем. Нет прямой связи между биоразнообразием экосистем и их продуктивностью (Гиляров, 1996). В разных экосистемах эти отношения различны: существуют маловидовые высокопродуктивные экосистемы (заросли тростника в дельтах южных рек) и многовидовые низкопродуктивные (альварные луга на карбонатных почвах в Швеции и Эстонии). Нет прямой связи и между биоразнообразием экосистем и их устойчивостью, т.е. способностью поддерживать и восстанавливать экологическое равновесие при влиянии на экосистему нарушающих факторов. Существуют устойчивые экосистемы из небольшого числа видов и неустойчивые – с большим числом видов. Так на островах Тихого океана, подверженных частым ураганам, устойчивость экосистем достигается за счет сравнительно небольшого числа видов. В то же время многие экосистемы влажных тропических лесов с высоким биоразнообразием оказываются неустойчивыми и медленно восстанавливаются даже после небольших нарушений. Все сказанное о возможно существующей в некоторых экосистемах «избыточности» видов не снимает проблемы охраны биоразнообразия, так как оно обладает «самодостаточной» ценностью (см. 4.6). Контрольные вопросы1. Что понимают под «избыточностью» видового богатства экосистемы? 2. Как связаны биологическое разнообразие и биологическая продукция экосистемы? 3. Как связаны биологическое разнообразие и устойчивость экосистемы? Темы докладов на семинарских занятиях1. Разнообразие взглядов на понимание объема экосистемы. 2. Значение детритофагов в жизни экосистемы. 3. Биологическая «энергетика» экосистем. 4. Факторы, определяющие биологическую продукцию и биомассу экосистем. 5. Почему важно охранять биологическое разнообразие экосистем? Глава 11. Разнообразие экосистем Разнообразие экосистем очень велико, и потому рассмотрим несколько примеров, достаточных для того, чтобы проиллюстрировать действие двух основных законов жизни любой экосистемы – круговорота веществ и однократности использования энергии, постоянно поступающей в экосистему извне. Из числа естественных автотрофных экосистем рассмотрим фототрофные экосистемы лесов и пресноводных водоемов, морей, а также хемотрофные экосистемы «черных курильщиков». Особенности естественных гетеротрофных экосистем мы обсудим на примере глубоководных «темновых» экосистем бентоса океанов и пещер. Из числа антропогенных экосистем кратко охарактеризуем принципы функционирования сельскохозяйственных и городских экосистем. Более подробное рассмотрение антропогенных экосистем является специальной задачей наук прикладной экологии – агроэкологии и городской экологии. В заключение главы будет рассмотрена система биомов мира – наиболее крупных единиц классификации экосистем, которые выделяются в масштабе тысяч и десятков тысяч квадратных километров. 11.1. Фототрофные естественные экосистемы: лес и озеро Схема «работы» фотоавтотрофной экосистемы, использующей в качестве источника энергии солнечный свет, а источника углерода – углекислый газ, общеизвестна. Их функциональные блоки были рассмотрены в разделе 10.2. Сконцентрируем внимание на различиях наземных и пресноводных экосистем, которые несмотря на общую схему работы различаются по многим параметрам: характеру лимитирующих факторов, скорости круговорота веществ, длине пищевых цепей, эффективности передачи энергии в этих цепях и, наконец, по соотношению биологической продукции и биомассы (табл. 10). Таблица 10 Сравнение основных признаков фототрофных пресноводных и наземных экосистем Из таблицы очевидно, что есть три главных отличия в функционировании пресноводных и наземных экосистем: – круговорот углерода в экосистеме водоема протекает быстро – всего за несколько месяцев, в то время как в экосистеме степи он составляет 3–5 лет, а леса – десятки лет; – биомасса продуцентов в водной экосистеме всегда меньше, чем их биологическая продукция за весь вегетационный период. В наземных экосистемах – наоборот, биомасса больше, чем продукция (в лесу – в 50 раз, на лугу и в степи– в 2–5 раз); – биомасса планктонных животных больше биомассы растений (водорослей). В наземных экосистемах биомасса растений всегда больше биомассы фитофагов, а биомасса фитофагов – больше биомассы зоофагов. Кроме того, водные экосистемы более динамичны, чем наземные. Они меняются в течение суток – зоопланктон к ночи собирается ближе к поверхности водоема, а в период, когда вода просвечивается солнцем и прогревается, опускается в глубину. Меняется характер экосистем по сезонам года. Во второй половине лета при высоком содержании элементов питания озера «цветут» – там массово развиваются микроскопические одноклеточные водоросли и цианобактерии. К осени биологическая продукция фитопланктона снижается, а макрофиты опускаются на дно. Изменяются экосистемы озер от года к году в зависимости от особенностей климата и соответственно количества воды, которая поступает в озеро весной и летом (и от ее качества, т.е. содержания в ней элементов минерального питания, органических веществ, твердых минеральных частиц и др.). В сухие годы озера мелеют, состав рыбного населения обедняется при заморах. В заключение отметим, что классы наземных и пресноводных экосистем внетренне неоднородны. В экосистемах пустынь накопление детрита ничтожно и биологическая продукция низка в силу дефицита воды и высоких затрат растений на дыхание, а в экосистемах тундр при сравнительно низкой биологической продукции накапливается большое количество детрита, поскольку вследствие дефицита тепла замедляется деятельность редуцентов и детритофагов. Во многом по-разному функционируют экосистемы олиготрофных и эвтрофных озер. В олиготрофных экосистемах круговорот веществ протекает в основном в фотическом слое, так как планктонные консументы играют одновременно и роль редуцентов: выделяемый ими фосфор тут же усваивается водорослями. Интенсивность «питательного дождя» из фотического слоя в затемненную придонную часть невелика. В эвтрофной экосистеме, напротив, значительная часть фитопланктона не усваивается зоопланктоном, оседает на дно и служит пищей детритофагам бентоса. При этом избыточные элементы питания захораниваются в сапропеле, что и вызывает процесс деэвтрофикации водоема. Контрольные вопросы1. Перечислите основные отличия наземных и пресноводных экосистем. 2. Как различаются функциональные параметры экосистем пустынь и тундр? 3. В чем состоит главное отличие функционирования экосистем олиготрофных и эутрофных озер? 11.2. Фототрофные экосистемы океана Экосистемы океанов занимают более 70% площади Земного шара. За исключением внутренних морей (крупных озер – Каспийского, Азовского) эти экосистемы сообщаются между собой. Средняя глубина океана составляет 3700 м, причем жизнь обнаруживается по всей глубине, безжизненных зон в океане нет. Химический состав морской воды включает 4 основных катиона (натрий, магний, кальций, калий) и 5 анионов (хлорид, сульфат, бикарбонат, карбонат, бромид). В прибрежной (ее называют неретической) зоне океанов некоторую роль играют элементы минерального питания, поступающие с суши. Однако на подавляющей площади открытого океана экосистемы функционируют только за счет углерода и азота, которые усваиваются из атмосферы. Круговороты веществ в них не привязаны к определенной территории: вещества могут переноситься морскими течениями на очень большие расстояния. Течения переносят теплые и холодные массы воды и тем самым через ее температуру влияют на условия жизни в океане. Теплую воду несут Гольфстрим и Северо-Атлантическое течение, холодную – Калифорнийские течение (по этой причине на побережье Калифорнии очень часты туманы). Кроме поверхностных ветровых течений, существуют и глубоководные перемещения водных масс. Благодаря течениям в морских экосистемах никогда не бывает недостатка кислорода. Подъем глубинных холодных вод, насыщенных питательными элементами, к поверхности океана называется апвеллингом. Он происходит в некоторых местах Мирового океана в результате сложного взаимодействия разных течений. Выделяют пять районов апвеллинга: Перуано-Чилийский, Орегон-Калифорнийский, Югозападно-Африканский, Северозападно-Африканский, Аравийский. В зоне апвеллинга наблюдается, как правило, высокая биологическая продукция, и ей характерны укороченные пищевые цепи, причем в фитопланктоне преобладают диатомовые водоросли, а в нектоне — сельдевые рыбы. В этих районах ведется рыбный промысел. С Перуано-Чилийским апвеллингом у западного побережья Южной Америки (близ пустыни Атакама со среднегодовым количеством осадков 10-50 мм и крайне бедной растительностью) связано массовое развитие анчоусов, которыми питаются прибрежные морские птицы – бакланы, пеликаны и др. Об интенсивности формирования вторичной биологической продукции в этом районе можно судить по следующим данным: 5 млн птиц ежегодно съедают до 1000 т анчоусов (в отдельные годы численность птиц возрастает до 27 млн особей). Однако столь высокое потребление рыбы птицами не мешает ежегодно вылавливать 10-12 млн т анчоусов, хотя в отдельные годы улов резко падает (до 2 млн т). Периодическое (раз в несколько лет) повышение температуры поверхностных вод Тихого океана у берегов Эквадора и Перу получило название Эль-Ниньо – Южное колебание (ЭНЮК). Продолжительность ЭНЮК – от 6-8 месяцев до 3-х лет, в среднем – 1-1,5 г. ЭНЮК чаще всего приходится на рождественские праздники (конец декабря), и потому рыбаки западного побережья Южной Америки связывали его с именем Иисуса в младенчестве. Каждое потепление воды резко снижает рыбопродуктивность океана. Между ЭНЮК происходит похолодание воды, названное перуанцами «Ла-Нинья» (в переводе – девочка). Различают несколько областей – зон океана (рис. 21). Рис. 21. Схема зонирования морских экосистем. Литораль – освобождающаяся от воды во время отлива прибрежная зона. В этих условиях произрастают устойчивые к затоплению и засолению цветковые растения – подорожник морской, триостренник, астра морская. Зостера и филлопос-падикс поселяются у нижней границы литорали и могут жить постоянно в воде. Животное население литорали представлено большим числом особей гаммарусов, моллюсков-литорин, мидий. Континентальный шельф – зона вдоль берегов до глубины 200 (реже 400) м. С этой областью связаны подводные заросли из ламинарий, достигающих 16 м длины. Эти заросли заселены разнообразными ракообразными, моллюсками, нематодами. Ламинариями питаются морские ежи. (На севере Тихого океана морскими ежами питаются каланы.) С этой зоной связан промысел морской рыбы (сельди, трески, камбалы, минтая, хека и др.), ракообразных (крабов, креветок, лангустов) и моллюсков (кальмаров). Пелагиаль – толща воды остальной части океана. Это самая обширная географическая зона планеты, занимающая около 70% площади Мирового океана, это «пустыня» с биомассой 1-2 г/м . В зависимости от глубины различаются четыре вертикальных слоя океана: – фотический – светлая часть океана, где обитают фотосинтезирующие организмы (микроскопические водоросли и цианобактерии, в прибрежном шельфе к ним добавляются бурые и красные водоросли), образующие первичную биологическую продукцию. Толщина этого слоя во многом определяется географической широтой. В районе экватора вертикально падающие солнечные лучи пробивают толщу воды в 250 м, а в Белом море те же лучи, но падающие под острым углом, способны просветить не более 25 м. Влияет на толщину фотического слоя и фитопланктон, который при массовом развитии может снижать прозрачность воды в 10 раз; – афотический – расположенный глубже обширный «темный» слой океана, где обитают разнообразные гетеротрофы, включая множество рыб; – абиссаль (бенталь) – придонная область афотического слоя пелагиали («вечной ночи»), где распространены простейшие из отряда фораминифер (до 0,5 млн экз. на 1 м 2 ) и нематоды – круглые черви очень малого размера (0,5-1 мм длины). Из крупных организмов встречаются морские ежи, голотурии, морские лилии и губки, но не более одного экземпляра на 1 м . – ультрабиссаль – глубоководные желоба на глубине свыше 8 тыс. м, где на каждый 1 см 2 поверхности давит столб воды весом более 1 т. Однако и в этой части океана есть жизнь – обитают голотурии, морские звезды, двухстворчатые моллюски, разнообразные ракообразные. Пищевые цепи в океанических экосистемах, как и в пресноводных, обычно состоят из 6 звеньев, последнее звено представлено нектоном – рыбами, млекопитающими и моллюсками. Около 10% биологической продукции в составе «питательного дождя» опускается в темные глубины океана, в том числе лишь 0,03-0,05% захоранивается в осадках, остальное потребляется гетеротрофами. Продукция повышается при волнении моря, способствующем обогащению воды кислородом. Самую высокую биологическую продукцию имеют коралловые рифы, эстуарии (лиманы, прибрежья в местах впадения рек) и зоны апвеллинга. Умеренно продуктивна зона континентального шельфа. Контрольные вопросы1. Расскажите о «горизонтальном» зонировании океана. 2. Какие «вертикальные» зоны различаются в океане? 3. Из скольки звеньев состоят пищевые цепи экосистем фотического слоя океана. 4. Какую роль в жизни океанических экосистем играют течения? 5. Перечислите основные районы апвеллинга. 11.3. Хемоавтотрофные экосистемы рифтовых зон В рифтовых зонах (местах разломов плит литосферы) подводного хребта Тихого океана из расщелин горной породы выделяются горячие воды, насыщенные сероводородом, сульфидами железа, цинка, меди и других тяжелых металлов. В этих зонах в 70-х гг. ХХ века были открыты хемоавтотрофные экосистемы, получившие название глубоководных геотермальных «оазисов». Температура «гейзеров» достигает 300°C, однако горячие воды не кипят вследствие высокого давления. Содержащиеся в горячей воде соли при контакте с холодной морской водой осаждаются и формируют конусовидные образования высотой до 15 м, которые называются «черными курильщиками». У оснований «черных курильщиков» и формируется «оазис». Продуцентами этих экосистем являются серобактерии, образующие скопления – бактериальные маты. За счет симбиоза с ними живут и наиболее важные организмы этой экосистемы – вестиментиферы – представители типа погонофор (черви длиной 1–2,2 м, заключенные в длинные белые трубки из хитиноподобного вещества, см. 8.6). В этих экосистемах, кроме того, много видов животных-хищников (крабы, моллюски, некоторые глубоководные рыбы). Позднее подобные «оазисы» были обнаружены и в других океанах. Биологическая продукция «оазисов» в десятки тысяч раз превышает продукцию типичных бентосных гетеротрофных экосистем (см. 11.2). Биомасса только вестиментифер может достигать 10–15 кг/м . Однако экосистемы «оазисов» существуют недолго и разрушаются после того, как прекратится деятельность подводных гейзеров. Кроме «оазисов» существуют еще и геотермальные «поля», которые обнаружены вдоль Центрального Атлантического хребта, простирающегося от Исландии до экватора. Они охватывают непосредственно хребет и окружающие его приподнятые участки дна, ширина «полей» может достигать 75 км. Температура вод, поднимающихся из расщелин – от 50 до 300°C. Жизнь экосистем «полей» в отличие от «оазисов» представлена только бактериями. Состав бактерий и продуктивность этих экосистем пока не изучены, но очевидно, что она много выше, чем у типичных экосистем абиссали. На сегодняшний день исследовано более 40 «полей», и особенно тщательно – «Потерянный город», расположенный в 15 км от главной гряды Центрального Атлантического хребта (30 о с.ш.) на глубине 700-800 м. Строения «города» из конусовидных образований неправильной формы напоминают сказочные замки высотой 60-80 м. Контрольные вопросы1. Какие условия складываются в рифтовых зонах глубоководий океана? 2. Расскажите об экосистемах «черных курильщиков». 3. Что такое геотермальные поля и где они распространены? 11.4. Гетеротрофные и автотрофно-гетеротрофные естественные экосистемы Гетеротрофные экосистемы существуют за счет поступления органического вещества извне, т.е. зависят от автотрофных экосистем. Такие отношения можно рассматривать как «комменсализм на уровне экосистем»: экосистемы, поставляющие органическое вещество, от этих поставок существенно не страдают, а получающие органическое вещество гетеротрофные экосистемы – выигрывают. Гетеротрофными являются экосистемы океанических глубоководий, в которых организмы живут за счет скудного «питательного дождя» из остатков организмов планктона и нектона и пеллет – экскрементов ракообразных, упакованных в особые оболочки. Органические вещества, выпадающие из светового слоя океана, постепенно съедаются по мере опускания в глубокие слои, и на глубину 4-5 км, где в кромешной тьме живут некоторые моллюски, ракообразные и даже рыбы, попадают сущие крохи. В итоге биологическая продукция таких экосистем крайне низка, а запас биомассы составляет доли грамма на 1 м . Еще ниже биологическая продукция и биомасса сообществ клещей на вечных снегах, которые живут за счет органических остатков, задуваемых снизу из заселенных вертикальных поясов гор. Типично гетеротрофными являются экосистемы темных пещер. Поступление органического вещества в них связано либо с экскрементами летучих мышей, которые в ночное время вылетают из пещер на охоту, либо с органическим веществом, которое заносится в пещеру током вод из освещенных территорий (Бирштейн, 1985). В составе населения таких экосистем могут быть жуки, паукообразные, мокрицы и многоножки. Второй трофический уровень (хищников) в пещерных экосистемах, как правило, не выражен, но обильны бактерии-редуценты. Существуют переходные от автотрофных к гетеротрофным типы экосистем, их пример – затененные лесные водоемы, где основным источником органического вещества является опад листьев деревьев, но имеется и некоторое количество организмов автотрофного планктона. Ю. Одум (1996) описывает автотрофно-гетеротрофную экосистему мангров в эстуариях, где главной пищевой цепью является детритная, которую открывают многочисленные детритофаги, питающиеся опадающими листьями. Кроме детритофагов в таких экосистемах есть еще не менее двух трофических уровней хищных рыб. Контрольные вопросы1. Расскажите о бентических экосистемах глубоководий океана. 2. За счет каких источников вещества и энергии функционируют экосистемы темных пещер? 3. Приведите примеры естественных автотрофных и гетеротрофных экосистем. 11.5. Сельскохозяйственные экосистемы Сельскохозяйственные экосистемы (агроэкосистемы) занимают около 1/3 территории суши, при этом 10% – это пашня, а остальное – естественные кормовые угодья. Агроэкосистемы относятся к фотоавтотрофным – имеют ту же принципиальную схему функционирования с передачей энергии по цепи «продуценты – консументы – редуценты», что и естественные наземные экосистемы. Их отличие заключается в том, что состав, структура и функция управляются не естественными механизмами самоорганизации, а человеком. Как пишет Ю.Одум (1986), человек стоит на вершине экологической пирамиды и стремится спрямить пищевые цепи Так чтобы получать максимальное количество первичной (растениеводческой) и вторичной (животноводческой) продукции нужного качества (Одум, 1986). Кроме того, агроэкосистемы значительно более открыты, чем естественные экосистемы: с растениеводческой и животноводческой продукцией из них происходит отток элементов питания. Некоторое количество элементов питания теряется и за счет вымывания в грунтовые и наземные воды, а также эрозии – смывания или сдувания с полей мелкозема, который является наиболее питательной частью почвы. Рис. 22. Схема управления сельскохозяйственной экосистемой ( по Миркину, Хазиахметову, 2000). Для того, чтобы управлять агроэкосистемой (рис. 22), человек затрачивает антропогенную энергию – на обработку почвы и полив, на производство и внесение удобрений и химических средств защиты растений, на обогрев животноводческих помещений в зимнее время и т.д. Количество затрачиваемой антропогенной энергии зависит от избранной стратегии управления. Сельское хозяйство может быть интенсивным (высокие вложения энергии), экстенсивным (низкие вложения энергии) или компромиссным (умеренные вложения энергии). Компромиссная стратегия наиболее целесообразна, так как позволяет сочетать достаточно высокий выход сельскохозяйственной продукции с сохранением условий среды и экономией энергии. Однако даже при интенсивной стратегии управления доля антропогенной энергии в энергетическом бюджете экосистемы составляет не более 1%. Основным источником энергии для «работы» агроэкосистемы является Солнце. Человек управляет практически всеми параметрами агроэкосистемы: – составом продуцентов (заменяет естественные растительные сообщества на искусственные посевы сельскохозяйственных растений и посадки плодовых деревьев); – составом консументов (заменяет естественных фитофагов на домашний скот); – соотношением потоков энергии по главным пищевым цепям «растение – человек» и «растение – скот – человек» (специализирует хозяйство на производстве растениеводческой или животноводческой продукции или на равное соотношение того и другого); – непроизводительным оттоком вещества и энергии по дополнительным пищевым цепям: «почва – сорные растения», «культурные растения – насекомые-фитофаги», «хозяин (культурные растения, домашние животные) – паразит», т.е. контролирует плотность деструктивной биоты (Swift, Anderson, 1993) – популяций сорных растений, насекомых фитофагов, паразитов; – уровнем первичной биологической продукции (улучшая условия для развития растений за счет обработки почвы, удобрений и полива). Человек управляет агроэкосистемой через биологических посредников, к которым относятся культурные растения, сельскохозяйственные животные, почвенная биота и все прочие организмы, населяющие агроэкосистему (насекомые-энтомофаги и опылители, птицы, растения сенокосов и пастбищ и др.). Посредники играют роль биологических усилителей, позволяющих уменьшать затраты антропогенной энергии. Способы управления агроэкосистемой совершенствовались в течение десяти тысяч лет истории сельского хозяйства (появились мощная сельскохозяйственная техника, минеральные удобрения, пестициды, стимуляторы роста и т.д.), однако возможности управления и сегодня по-прежнему ограничиваются целым рядом условий – экологических и биологических: – агроресурсами – климатом (количеством осадков и продолжительностью теплого периода), характером почв и рельефом. От этих условий зависит состав видов и сортов возделываемых растений и видов и пород сельскохозяйственных животных; – потенциалом формирования первичной биологической продукции – верхним пределом эффективности фотосинтеза, который в большинстве случаев не превышает 1% поступающей солнечной энергии (в особо продуктивных посевах в теплом климате на удобрении и поливе – до 2%); – максимально возможной долей хозяйственно ценных фракций в урожае – хлопкового волокна, клубней, корнеплодов, зерна и т.д. (например зерна может быть не больше 40% от всей биологической продукции, хотя у пшеницы сорта «Мексикале», выведенного «отцом» зеленой революции Н. Берлоугом, долю зерна удалось довести до 60%); – неизбежным рассеиванием энергии при переходе ее с первого трофического уровня на второй (при откорме скота): для получения 1 кг вторичной биологической продукции при откорме бройлеров, свиней и коров необходимо затратить (в пересчете на зерно) 2, 4 и 6 кг корма; – плодовитостью сельскохозяйственных животных: ограничены верхние пределы яйценоскости кур, числа потомства у коров и свиней и т.д. Биологические ограничители преодолеть невозможно, хотя влияние ресурсных ограничителей может быть ослаблено при интенсивной стратегии управления (высокие дозы удобрений, полив, создание закрытого грунта, террасирование склонов). Однако как показал опыт зеленой революции 60-х гг. ХХ в., когда на поля пришли сверхурожайные сорта, высокие вложения энергии привели к разрушению агроресурсов – почвы, истощению ресурсов воды и ее загрязнению, снижению биоразнообразия. Таким образом, высокие энергозатраты на управление агроэкосистемой экологически неоправданны. Кроме того, энергия сама по себе дефицитна, так как ограничены ресурсы энергоносителей, а производство и транспортировка энергии сопровождаются загрязнением среды. По этой причине при экологически ориентированном управлении агроэкосистемой и умеренных затратах антропогенной энергии получение достаточно большого количества сельскохозяйственной продукции высокого качества не снижает устойчивости агроэкосистемы (т.е. обеспечивает сохранение ее агроресурсов). Чтобы вести сельское хозяйство в соответствии с этими требованиями, человек вынужден ограничивать: – долю пашни (особенно под выгодными, но разрушающими почву культурами – подсолнечник, кукуруза, рис), сохраняя часть агроэкосистемы под многолетними травяными сообществами кормовых угодий или под лесом (естественным или лесопосадками); – вмешательство в жизнь почвы при ее обработке (использовать не отвальные плуги, а рыхлители) и дозы минеральных удобрений и химических средств защиты растений; – поголовье скота. Кроме того, для экологически ориентированного управления агроэкосистемами он должен: – возделывать виды и сорта культурных растений и разводить породы сельскохозяйственных животных, которые требуют меньших затрат антропогенной энергии (засухоустойчивые виды, не требующие полива, например сорго; лошадей, которые круглый год содержатся на пастбищах, и т.д.); – использовать экологичные севообороты с многолетними травами и сидератами (их зеленую массу не убирают, а запахивают в почву как удобрение) для восстановления плодородия почв; – возделывать поликультуры и сортосмеси, т.е. смеси культурных растений, которые более полно используют агроресурсы и требуют меньших затрат на защиту растений; – рассредоточивать скот по территории агроэкосистемы (содержать его на небольших фермах), чтобы облегчить внесение навоза на поля. Агроэкосистемы, которые создаются в соответствии с этими принципами, называются самоподдерживающимися (sustainable). В них обеспечивается предельно возможное сходство с естественными экосистемами. К сожалению, в настоящее время доля устойчивых агро-экосистем в мире (и особенно в России) мала. Под влиянием сельского хозяйства продолжается разрушение почв, нарушаются гидрологические и гидрохимические характеристики агроландшафтов, снижается биологическое разнообразие. Контрольные вопросы1. Какую площадь суши планеты занимают агроэкосистемы? 2. Чем отличаются агроэкосистемы от естественных фотоавтотрофных экосистем? 3. Какова доля антропогенной энергии, затрачиваемой на управление агроэкосистемой, в энергетическом бюджете последней? 4. Перечислите основные параметры агроэкосистемы, которыми управляет человек. 5. Какие биологические посредники использует человек для управления агроэкосистемой? 6. Перечислите ресурсные ограничители при управлении агроэкосистемой. 7. Расскажите о биологических ограничителях при управлении агроэкосистемой. 8. Что такое компромиссная система управления агроэкосистемой, каковы ее экологические и экономические преимущества? 9. Какие параметры характеризуют устойчивую агроэкосистему? 11.6. Городские экосистемы Городские экосистемы (территории городов и их население) – это гетеротрофные антропогенные экосистемы. Однако в отличие от сельскохозяйственных экосистем в них нет элементов саморегуляции. Отнесение городов к экосистемам достаточно условно, это, скорее, «антиэкосистемы», для которых характерны три особенности: – зависимость, т.е. необходимость постоянного поступления ресурсов и энергии; – неравновесность, т.е. невозможность достижения экологического равновесия; – аккумулирование твердого вещества за счет превышения его ввоза в город над вывозом (примерно 10:1). Это в прошлом приводило к повышению уровня поверхности города (формированию культурного слоя, который в старых городах достигает нескольких метров), а сегодня ведет к увеличению площади полигонов хранения бытовых и промышленных отходов. По образному выражению Ю.Одума (1986), города являются “паразитами биосферы”, которые потребляют огромное количество кислорода, воды и других ресурсов, а продуцируют только углекислый газ и загрязнение окружающей среды. На космических снимках города с расползающимися инфраструктурами напоминают раковые опухоли. Задачи экологически ориентированного управления городскими экосистемами в отличие от управления агроэкосистемами, которое осуществляется с использованием организмов-посредников, – чисто технологические, связанные с совершенствованием технологий производства промышленных предприятий, экологизацией коммунального хозяйства и транспорта. За счет совершенствования производства и транспортных средств и развития системы общественного городского транспорта (последнее особенно важно, так как автомобили дают от 50 до 90% загрязнения городской атмосферы) улучшается качество городской атмосферы и воды. Технологически решаются и задачи уменьшения энергопотребления городов за счет рассредоточения установок по получению энергии (из углеродистых энергоносителей, солнечных коллекторов и т.д.), ее более экономного использования в коммунальном хозяйстве (замена ламп накаливания лампами холодного свечения, теплоизоляция стен, использование экономичной бытовой техники и т.д.) и на промышленных предприятиях. Аналогично инженерными являются вопросы расходования воды и соответственно очистки загрязненных стоков, уменьшения количества, хранения и переработки твердых бытовых отходов. На каждого горожанина работает от 1 до 3 гектаров сельскохозяйственных угодий (в том числе 0,5 га пашни). Соответственно экологической является задача экономного расходования продуктов питания и недопущения их порчи. Если человек не может сделать городскую среду равновесной, то он должен делать все возможное, чтобы ограничить пагубное влияние городов на окружающие их естественные и сельскохозяйственные экосистемы. Идеальным вариантом городских экосистем являются экосити – небольшие (с населением 50-100 тыс. человек) зеленые города. Однако рост народонаселения делает возможности расселения людей в экосити весьма ограниченными (по существу, «экосити» есть в любом пригороде большого города, где в коттеджах живет наиболее процветающая часть общества). Задача экологии – управлять экосистемами крупных городов (в том числе и мегаполисами масштаба Токио или Нью-Йорка, население которых превышает 10 млн человек) Так чтобы делать в них жизнь горожан более благоприятной и ослабить пагубное влияние этих «паразитов биосферы» на окружающую среду – прекратить процесс расползания городов и уменьшить загрязнение атмосферы, воды и почвы. Города должны сохраняться в сложившихся границах и расти в первую очередь вверх, освобождая место для зеленых насаждений, которые являются наиболее эффективным и универсальным средством улучшения городской среды. Зеленые насаждения улучшают микроклимат, уменьшают химическое загрязнение атмосферы, снижают уровень физического загрязнения (в первую очередь шумового) и благотворно влияют на психологическое состояние горожан. По экологическим нормативам на одного горожанина должно приходиться 50 м 2 зеленых насаждений в рамках города и 300 м 2 в пригородных лесах. Контрольные вопросы1. Перечислите основные особенности городских экосистем. 2. Почему Ю. Одум назвал города «паразитами биосферы»? 3. Что такое экосити? 4. В каком направлении должны экологизироваться современные города? 11.7. Биомы Биом — это высшая единица классификации экосистем. По Ю. Одуму (1986), это крупная региональная или субконтинентальная биосистема, характеризующаяся каким-либо основным типом растительности или другой особенностью ландшафта. Биомы наземных экосистем формируются под воздействием комплекса условий среды, в первую очередь – климата. По объему «биом» совпадает с географическим понятием «природная зона». Наиболее важные биомы суши: — тундры (арктические и альпийские) – безлесные территории, расположенные севернее (или выше) лесного пояса; — тайга – хвойные леса умеренной зоны; — листопадные (широколиственные) леса умеренной зоны; — степи умеренной зоны (имеют две паузы в вегетации – зимой и во второй половине лета во время засухи); — тропические степи и саванны (вегетируют круглый год, но в период засухи их биологическая продукция резко снижается); — пустыни – экосистемы в условиях сильного стресса засухи при годовом количестве осадков менее 200 мм; — полувечнозеленые сезонные тропические леса («зимне-зеленые» леса, сбрасывающие листья летом); — тропические дождевые леса (вегетируют круглый год и являются самыми продуктивными экосистемами Земли). Биомы водных экосистем определяются в первую очередь соленостью воды, содержанием в ней элементов питания, кислорода и температурой, скоростью течения. Так экосистемы пресных вод разделяются на биомы стоячих и проточных вод. Экосистемы стоячих вод более разнообразны, так как в этом случае шире пределы изменения условий, определяющих состав биоты и ее продукцию, – глубины водоема, химического состава воды, степени зарастания водоема. В биомах проточных вод большую роль играет скорость течения и различен состав биоты на перекатах и плесах. Среди экосистем морских побережий различают биомы приморских скалистых побережий, достаточно бедных элементами питания, и эстуариев (лиманов) – богатых элементами питания илистых отмелей у впадения рек. Среди пелагических экосистем океана различают биомы фотических (автотрофных) сообществ верхнего слоя вод (поверхностные пелагические сообщества) и морских глубоководных пелагических гетеротрофных сообществ. Как биомы рассматриваются бентосные сообщества континентального шельфа, коралловые рифы (высокопродуктивные сообщества тропических морей) и хемоавтотрофные сообщества гидротермальных оазисов. Биологическая продукция и биомасса экосистем разных биомов значительно различается (табл. 11). Таблица 11 Биологическая продукция и биомасса основных биомов мира (в сухом веществе, Уиттекер, 1980) Контрольные вопросы 1. Что такое биом? 2. Перечислите основные биомы суши. 3. Какие биомы выделяются в океанах? 4. По какому принципу разделяются биомы континетальных водоемов? Темы докладов на семинарских занятиях1. Разнообразие наземных экосистем. 2. Разнообразие пресноводных экосистем. 3. Экосистемы океанов. 4. Особенности сельскохозяйственных экосистем. 5. Экологические проблемы городских экосистем. Глава 12. Динамика экосистем Экосистемы постоянно меняются, причем в разном «биологическом времени» и разном «биологическом пространстве». При этом в любой точке экосистемы одновременно происходят под влиянием самых разных причин изменения, накладывающиеся друг на друга. Ситуация напоминает траекторию движения молекулы в колбе лабораторной мешалки, в которой разбалтывается смесь почвы и воды. Молекула совершает броуновское движение, вместе с колбой – колебательное, «встряхивательное» в мешалке, движется вместе с планетой при ее вращении вокруг своей оси и совершает полет вокруг солнца, путешествуя в галактике вместе с солнечной системой, и т.д. Кроме того, в этот сложный тренд изменения положения молекулы могут встраиваться ее движения в связи с подъемами и опусканиями уровня суши, местными колебаниями поверхности почвы вследствие прохождения тяжелой техники и т.д. По этой причине, чтобы разобраться в общих закономерностях динамики экосистем, необходимо расчленить все компоненты изменений под влиянием разных факторов и рассмотреть их порознь в разном «биологическом пространстве» и в разном «биологическом времени». Следует сделать одно важное предварительное замечание. Мы уже отмечали, что полностью пересчитать все виды, входящие в состав экосистемы, при реальных затратах времени не удается. Именно поэтому экологи понимают экосистемы как явления в первую очередь функциональные, оценивают их продуктивность, круговороты веществ, закономерности перехода энергии по пищевым цепям и т.д. По этой же причине никто никогда не пытался изучить динамику экосистем с учетом всех входящих в их состав видов. Чаще всего о динамике наземных экосистем судят по изменению состояния ее автотрофного блока – совокупности растительных сообществ (или одного растительного сообщества), априори полагая, что эти изменения индуцируют и перестройку всей гетеротрофной биоты экосистемы в соответствии с принципом «разнообразие порождает разнообразие». Связь гетеротрофной биоты с растениями при этом может быть прямой – они питаются этими растениями и косвенной – состав растительного сообщества отражает состояние условий среды, которые влияют на состав консументов и редуцентов (влажность почвы, содержание в воде кислорода, реакция среды и т.д.). Динамика экосистем обычно изучается по схеме: а) выявление динамики растительных сообществ с выделением стадий этой динамики как некой «канвы» для изучения изменения гетеротрофных компонентов экосистемы; б) изучение динамики гетеротрофной биоты. При этом исследуется динамика либо наиболее важных видов (редких или ресурсных с целью их охраны или рационального использования), либо крупных таксономических групп – птиц, рыб, млекопитающих, отдельных групп насекомых. Динамика растительных сообществ – это один из наиболее развитых разделов современной науки о растительности (Миркин и др., 2000). Именно поэтому, рассматривая динамику экосистем, мы в значительной мере будем опираться на теоретические разработки этой науки. 12.1. Классификация изменений экосистем Все изменения можно разделить на два больших класса, впрочем, тоже связанных плавным переходом: циклическая динамика и векторизованные (направленные) изменения. Циклические изменения – это изменения состава, структуры и функций экосистемы вокруг некоторой средней величины, соответствующей состоянию экологического равновесия. При экологическом равновесии в экосистеме: – состав видов сохраняется постоянным (хотя часть из них периодически находится в покоящемся состоянии или отсутствует в результате миграции); – продукция автотрофов полностью перерабатывается гетеротрофами (суммарная продукция биоценоза равна ее суммарному дыханию), хотя часть ее может временно переходить в детрит; – круговороты веществ замкнуты: сколько какого-то элемента израсходовано организмами, столько и возвращено обратно в окружающую среду. Если какое-то количество веществ покинуло экосистему (при «фоновой» эрозии почв, внутрипочвенном стоке, за счет денитрификации, испарения и т.д.), то оно компенсируется поступлением веществ в экосистему извне (идет процесс выщелачивания материнских пород, биологическая фиксация азота, выпадают осадки и т.д.). Направленные (векторизованные) изменения – это изменения состава и функциональных параметров экосистемы. По своей природе они могут быть подразделены на три основных типа. Нарушения – резкие изменения состава и функции экосистемы под влиянием внешнего фактора – при землетрясении, селевом потоке, пожаре, наводнении, распашке, вырубке леса, разливе нефти и т.д. Разные нарушения охватывают разное биологическое пространство: от нескольких квадратных метров (разлив небольшого количества нефти, вырубание одного или нескольких деревьев) до десятков квадратных километров (крупные пожары). В зависимости от фактора, вызвавшего нарушение, и особенностей (устойчивости) экосистемы результат может быть разным. Настолько разным, что трудно делать какие-либо обобщения о реакции экосистем на нарушения. Автогенные сукцессии – постепенные изменения экосистемы под влиянием жизнедеятельности ее биоты, при которых меняются состав видов и функциональные параметры экосистемы в направлении формирования равновесного с климатом устойчивого состояния – климакса. В зависимости от того, возрастают или убывают в ходе сукцессий биологическая продукция, запас биомассы, видовое богатство, они подразделяются на прогрессивные и регрессивные. Различаются три варианта автогенных сукцессий: – первичные автотрофные. Эти сукцессии начинаются «от нуля», т.е. в условиях, где практически не было жизни, которая в ходе сукцессии осваивает новое пространство; – вторичные автотрофные (восстановительные). Эти сукцессии начинаются после полного или частичного разрушения экосистемы под влиянием нарушений или после прекращения процесса рассматриваемых ниже аллогенных сукцессий. Как правило, вторичные сукцессии протекают быстрее, чем первичные, так как от разрушенной первичной экосистемы остается какой-то запас «остатков жизни» – семян растений и их вегетативных органов в почве, спор мхов и грибов, покоящиеся стадии почвенных животных и т.д.; – гетеротрофные (деградационные). В этой сукцессии последовательно сменяют друг друга группы детритофагов и редуцентов и связанные с ними хищники и паразиты. Аллогенные сукцессии – изменения экосистем под влиянием внешнего по отношению к ним фактора. Эти сукцессии продолжаются до тех пор, пока действует внешний фактор. Как только его действие прекратится, начнется вторичная восстановительная сукцессия. Эволюция экосистем. Эти изменения также постепенны, как и сукцессии, но отличаются результатом – возникают новые ансамбли видов, которых в природе еще не было. Такие изменения экосистем могут быть природными и антропогенными. Природная эволюция протекает в геологическом масштабе времени. В настоящее время она почти полностью подавлена антропогенной эволюцией экосистем. Как и сукцессии, эволюция экосистем может быть не только прогрессивной, сопровождающейся их усложнением (обогащением состава видов), но и регрессивной, при которой происходит обеднение состава биоты экосистемы. Регрессивной, как правило, является антропогенная эволюция экосистем. Рассмотрим перечисленные варианты динамики экосистем более подробно. Контрольные вопросы1. Какие общие черты характерны для циклических изменений экосистем? 2. Перечислите основные формы направленных изменений экосистем. 3. Чем отличаются прогрессивные и регрессивные изменения экосистем? 12.2. Циклические изменения экосистем Циклические изменения экосистем очень разнообразны, они могут вызываться абиогенными причинами (в первую очередь изменением условий в суточном, годичном и многолетнем (разногодичном)) и биогенными – флюктуациями плотности популяций «ключевых» видов. Циклическая динамика протекает в разных масштабах «биологического времени» и «биологического пространства». Суточные изменения наиболее наглядны в водных экосистемах, где в период максимальной освещенности зоопланктон рассредоточивается по толще воды, но в вечерние часы, когда освещенность уменьшается, он концентрируется близ поверхности. Суточные изменения связаны с биоритмами (см. 4.4.2): в жизнедеятельности дневных и ночных животных, в закрывании на ночь цветков, в изменении положения листовых пластинок многих видов деревьев. У лотоса орехоносного, которой образует «поля» в Астраханском заповеднике, ночью листья лежат на поверхности воды, как у кувшинки или кубышки, но днем приподнимаются над ней на несколько сантиметров, что резко изменяет условия жизни населения поверхности водоема, которое в дневные часы может жить под зонтом из листа лотоса. В суточном ритме меняются и функциональные параметры экосистемы – интенсивность фотосинтеза и переработки первичной биологической продукции во вторичную. Лишь в почве, заселенной армадой простейших и беспозвоночных животных, жизнь в ночные часы замедляется незначительно. Сезонные изменения. Сезонные ритмы организмов общеизвестны. С сезонами года связаны жизненные циклы большинства живых организмов (цветение и плодоношение растений, выведение потомства животными и т.д.). Обитатели экосистемы хорошо адаптированы к смене времен года: растения на зиму сбрасывают листья, теплокровные животные «утепляются», увеличивая прослойку жира и густоту шерстного покрова, впадают в спячку или мигрируют в более благоприятные условия (птицы), меняют «маскировочные халаты» (зайцы становятся белыми) и т.д. В зависимости от сезона года существенно различаются и функциональные параметры экосистемы. В умеренных широтах в зимнее время резко снижаются продукция и дыхание, хотя в тропических лесах сезонность «работы» экосистемы практически отсутствует. В степях жизнь экосистем замедляется дважды – зимой и во второй половине лета в период дефицита влаги. Сезонная динамика ярко проявляется в водных экосистемах. В первой половине лета вода насыщена элементами минерального питания и бурно (в соответствии с экспоненциальной кривой) размножаются виды фитопланктона. Их обилие к середине лета снижается в результате выедания зоопланктоном. К осени макрофиты опускаются на дно. Эвтрофицированные водоемы во второй половине лета «цветут» (происходит массовое развитие цианобактерий). Многолетние (разногодичные) изменения. Они еще более разнообразны. Под влиянием климатических особенностей года (динамики температуры, количества осадков, паводков в пойменных экосистемах) изменяется величина первичной и вторичной биологической продукции. Кроме того, часть видов переживает неблагоприятные по климату годы в состоянии покоя (в год засухи в луговых сообществах развивается не более одной трети видов растений, а остальные переходят в состояние покоя – семян, «спящих» подземных органов и т.д.). Не менее значительными могут быть изменения в составе животного населения. Так засухами порождаются миграции саранчи. Примером многолетних изменений экосистем, вызываемых биотическими причинами, является динамика степных экосистем Монголии под влиянием вспышек численности полевки Брандта – мышевидного грызуна, который является «ключевым» видом. При массовом развитии полевки резко меняется состав растительного сообщества: вместо ковылей, листья которых съедают грызуны, из подземных корневищ развиваются побеги других злаков, особенно востреца (Elymus chinensis). Однако вслед за пиком численности начинается спад плотности популяции грызуна. И через несколько лет популяции ковылей также восстанавливаются, а корневищные злаки переходят в прежнее состояние «полупокоя» и «готовятся» к новой вспышке обилия грызунов. Колебания фаз «Elymus chinensis – Stipa krilovii» – характерная особенность монгольских степей, которую описали выдающиеся исследователи А.А. Юнатов и Е.М. Лавренко. В европейских широколиственных лесах в некоторые годы массово развивается непарный шелкопряд. Его гусеницы почти полностью поедают листву деревьев, что улучшает условия для жизни растений напочвенного покрова (освещенность, обеспеченность элементами минерального питания за счет экскрементов гусениц). В итоге резко падает биологическая продукция деревьев, но возрастает продукция трав и соответственно связанных с ними фитофагов. Кабаны постоянно перерывают участки леса в поисках корма. На пороях площадью несколько десятков метров разрастаются рудеральные растения, однако в течение 4-5 лет происходит восстановление напочвенного покрова и как следствие – циклическая динамика всей биоты. Естественно, что «вспашка» кабанами участка леса резко изменяет жизнь всего почвенного ценоза. Активизируется деятельность бактерий-аэробов и животных, предпочитающих условия рыхлых и хорошо аэрированных почв. Более продолжительны циклы, вызываемые деятельностью бобров: после того, как они запрудят реку, в течение нескольких лет происходит интенсивная перестройка экосистемы и возрастает роль влаголюбивых растений и их спутников. Виды деревьев, неустойчивых к подтоплению и затоплению, вообще погибают. Однако за 10-20 лет использования этой территории бобры выедают растения, служащие им кормовой базой (в первую очередь ольху) и меняют место жительства. Происходит достаточно быстрое разрушение «гидромелиорированной» экосистемы и восстановление прежней. Этот цикл продолжается примерно 100 лет. В масштабе десятилетий происходят обратимые изменения лесов Дальнего Востока, связанные с биологическими циклами видов бамбука из рода Sasa, являющихся ключевыми в этих экосистемах. Бамбуки, развивающиеся в подлеске, подавляют возобновление деревьев. Но они монокрапики (т.е. плодоносят всего один раз и после этого погибают), и после гибели очередной генерации бамбука в течение нескольких лет до следующего его разрастания активно возобновляются популяции деревьев. В широколиственных лесах Восточной Европы в результате выпадения отдельных деревьев (от старости или под влиянием ветра) образуются «окна». В «окнах» размером несколько десятков метров формируются сообщества из эксплерентов (рудеральных трав, ольхи, березы), которые спустя несколько десятилетий замещаются «основными» видами этого типа леса. Исследователи тропических лесов назвали эти сменяющие друг друга группы «дриадами» и «номадами». Динамика «дриад» и «номад» соответствует одной из моделей устойчивости экосистем: устойчивость в крупном масштабе биологического пространства слагается из неустойчивостей в его мелком масштабе. В целом любые циклические изменения экосистем – это отражение их пластичности, т.е. приспособленности состава, структуры и функциq к колебаниям условий среды и жизненным циклам «ключевых» видов. Контрольные вопросы1. Перечислите варианты циклических изменений экосистем. 2. Приведите примеры суточных изменений экосистем. 3. Приведите примеры сезонных изменений экосистем. 4. По каким причинам происходят разногодичные изменения экосистем, приведите их примеры. 12.3. Первичные автогенные сукцессии и климакс Первичные автогенные сукцессии зарастания субстратов, образующихся после таяния ледника на Новой Земле, еще в начале XIX столетия описал русский ученый К. Бэр (Трасс, 1976). Тем не менее концепция первичной автогенной сукцессии, в результате которой экосистема переходит в экологически равновесное состояние, наиболее соответствующее климату, связана с именем выдающегося американского эколога Ф. Клементса. Это равновесное состояние было названо климаксом. Экосистемы стадий сукцессии на пути к климаксу Клементс назвал серийными. Клементс считал, что в любом географическом районе с одним типом климата есть только один тип экосистемы (моноклимакс), который наиболее соответствует этому климату. К примеру, в Восточной Европе в биоме тайги – это еловый лес, в биоме широколиственных лесов – липово-дубовый лес, в биоме степей – разнотравно-ковыльная степь. Все иные типы экосистем «стремятся» перейти в этот тип, т.е. происходит процесс конвергенции (выравнивания) состава экосистем одного района: на скалах образуются почвы; озера зарастают, превращаясь в болота, которые со временем высыхают; происходит измельчение минеральных частиц (пески превращаются в суглинки); более сухие местообитания становятся более влажными за счет накопления органического вещества, которое способно удерживать дождевые и снеговые воды. Кроме того, Клементс выделял множество разных типов сообществ (и соответствующих им экосистем), которые в результате действия какого-либо внешнего фактора «застревают» на определенной стадии сукцессии и не могут перейти в климакс, т.е. являются хронически сериальными. Например, субклимакс – это экосистема поймы реки, которая не переходит в климакс вследствие регулярных паводков. Дисклимакс – это экосистема, которая не переходит в климакс в результате действия нарушающего ее фактора (например интенсивно использующееся пастбище). В ходе сукцессий экосистем, формирующих климакс, возрастают продуктивность и биомасса, видовое богатство, сложность структуры (формируются почвы, появляются растения разных жизненных форм – деревья, кустарники, травы, что формирует дополнительные ниши для гетеротрофов). Повышается роль различных механизмов сосуществования – дифференциации экологических ниш, мутуализма, коадаптации между хищниками и их жертвами и т.д. Условия для жизни растений и видов гетеротрофной биоты в ходе такой сукцессии улучшаются, а сама последовательность видов в ходе сукцессии жестко детерминирована законами «онтогенеза» экосистем. Экологи, развивавшие функциональный взгляд на экосистему (А. Лотка, Г. Одум, Р. Пинкертон, Р. Маргалеф) подчеркивали, что по мере приближения к климаксу происходит сдвиг потока энергии от продуктивности к дыханию (Лотка говорил даже о «законе максимума биологической энергии»). Ю. Одум (1986) подчеркнул, что в ходе сукцессии по мере ее приближения к климаксу происходит выравнивание соотношения продукции (P) и дыхания (R), т.е. в климаксовой экосистеме Р=R. Вся продукция, которая образована за год, растрачивается на дыхание, и потому дальнейшего увеличения биомассы не происходит. Отношение величины биомассы к продукции (В/Р) возрастает до тех пор, пока на единицу потока энергии не будет приходится максимум биомассы для данного климата (этот максимум будет различаться в зонах тайги, широколиственных лесов, степи, пустыни и т.д.). По мере приближения к климаксу круговороты биогенных элементов становятся все более замкнутыми и медленными, причем возрастает доля биогенов, которые фиксированы в живых организмах и детрите (включая и гумус почвы). В ходе сукцессии происходят «эстафеты» представителей флоры, фауны, грибов, микроорганизмов, причем в большинстве случаев виды r-стратегии сменяются видами К-стратегии (по Макартуру и Уилсону) или (по Раменскому и Грайму) виды стратегии R – видами стратегий С, S и различных переходных вторичных типов (CS, CR, RS, CRS). Таким образом, малолетники сменяются многолетниками, а травы – деревьями, что приводит к увеличению биологической продукции за счет более полного использования ресурсов. Работы Клементса навсегда останутся классикой экологии и краеугольным камнем теории динамики экосистем. Тем не менее сформулированные им представления в ходе дальнейшего развития экологии претерпели существенные изменения: 1. А. Тенсли и А. Найколсон показали, что в одном районе может формироваться не один, а несколько климаксов, т.е. экосистемы, которые формируются при сукцессиях зарастания скал, озер, песков, лессовидных суглинков и т.д., будут различными. Концепция моноклимакса, таким образом, переросла в концепцию поликлимакса. Р. Уиттекер, развивая эти представления, сформулировал концепцию «климакс-континуума». Он считал, что разные экосистемы поликлимакса связаны друг с другом плавными переходами и по этой причине в каждой точке – свой климакс. 2. Климакс – это не обязательно самая продуктивная и богатая видами экосистема. Как правило, наибольшим видовым богатством и продуктивностью отличаются как раз «предклимаксовые» серийные экосистемы. 3. Сукцессия не является жестко детерминированным, «запрограмированным» процессом, подобным онтогенезу организма, а имеет стохастический характер. Закономерности сукцессий можно выявить только при обобщении (усреднении) результатов наблюдений за несколькими конкретными сукцессиями, протекающими в одних и тех же условиях. В конкретных сукцессионных последовательностях приход видов в сукцессию и уход из нее может происходить в разной очередности. Более того, некоторые виды могут участвовать в одной конкретной сукцессии и не участвовать в другой. Мы уже говорили о том, что функциональных «ролей» в любой экосистеме всегда много меньше, чем число их возможных «исполнителей» (см. 10.8). Контрольные вопросы1. Расскажите о представлениях Ф. Клементса в вопросе динамики экосистем. 2. Перечислите функциональные параметры климаксовой экосистемы. 3. Виды с какими типами стратегий представлены на разных стадиях автогенной сукцессии? 4. Какие положения концепции Ф. Клементса об экологической сукцессии и климаксе были пересмотрены? 12.4. Модели автогенных сукцессий Ф. Клементс считал, что все сукцессии развития экосистем в направлении климакса подчиняются одной модели: улучшаются условия для жизни биоты, и потому возрастают биологическая продукция и видовое богатство экосистемы. Современные экологи различают не менее трех моделей сукцессий (Connell, Slayter, 1977): – модель благоприятствования. Соответствует представлениям о сукцессии Клементса: продуктивность и видовое богатство в ходе сукцессии возрастают вплоть до стадии климакса. Классический пример такой сукцессии – зарастание скал, где последовательно сменяют друг друга стадии цианобактерий и водорослей, накипных лишайников, кустистых лишайников и мхов, трав, кустарников и деревьев; – модель толерантности. В ходе сукцессии условия ухудшаются, пример – переход низинного болота в верховое, при котором происходит ухудшение условий минерального питания, и потому снижаются продуктивность и видовое богатство. Ухудшаются условия для жизни биоты и в ходе сукцессии на богатых субстратах: первым растениям-поселенцам достается больше ресурсов минерального питания и света, чем вторым и третьим, которые должны обеспечивать себя ресурсами в условиях возрастающей конкуренции; – модель ингибирования. В ходе сукцессии появляется «ключевой» вид (или гильдия ключевых видов), который блокирует дальнейшие изменения. В результате происходит остановка сукцессии и она не доходит до стадии климакса. Например на лесных гарях в Шотландии кукушкин лен блокирует поселение деревьев, в пустынях Средней Азии поселению кустарников и саксаула препятствует корка, которую образуют цианобактерии, водоросли и некоторые мхи. Восстановление прерии в Северной Америке блокируется разрастанием заносных европейских злаков-однолетников, в первую очередь Bromus tectorum. В ходе сукцессии может происходить смена модели благоприятствования моделью толерантности: на первых стадиях условия улучшаются, а по мере приближения к климаксу – ухудшаются. Наглядный пример сукцессии со сменой модели –формирование растительности при освобождении побережья фиорда ото льда на Аляске (Chapin et al., 1994). Выделяется четыре стадии процесса: – пионерная (до 20 лет). Поверхность субстрата покрывается «черной коркой» из азотфиксирующих цианобактерий, гаметофитов хвоща (Equisetum variegatum), лишайников, печеночников, на фоне которых рассеянно встречаются травы, кустарничек Dryas drummondii, отдельные экземпляры ивы, тополя (Populus trichocarpa), ели (Picea sitchensis) и ольхи (Alnus sinuata); – стадия Dryas (между 20 и 30 годами). Вся поверхность покрыта ковром кустарника, в котором рассеяны одиночные экземпляры ив, тополей, елей и ольхи; – стадия ольхи (между 50 и 100 годами); – стадия ели (после 100 лет). В ходе сукцессии формируется почва, которая обогащается органическим веществом и азотом, а смена видов растений идет в направлении повышения их высоты и длительности жизни, что соответствует модели благоприятствования. Однако при этом возрастает уровень конкуренции за свет и почвенные ресурсы (особенно на стадии ели), ухудшаются условия для приживания всходов, повышается вероятность гибели семян, что соответствует модели толерантности. смена моделей происходит на четвертой стадии. Смена модели благоприятствования моделью толерантности характерна и для сукцессий экосистем в теплом климате. Так при зарастании лавовых потоков на первых стадиях условия улучшаются за счет бобовых (особенно из р. Lupinus), которые способствуют обогащению субстрата азотом, а в дальнейшем – ухудшаются, так как обостряется конкуренция. Несмотря на то, что автогенные сукцессии протекают спонтанно по присущим им внутренним законам, человек, зная эти законы, может влиять на скорость сукцессии. Так для ускорения самозарастания отвалов пустой породы их поверхность покрывается тонким слоем торфа или почвы, в которой содержатся семена растений. Кроме того, процесс зарастания может быть ускорен посевом семян луговых трав или посадкой кустарников и деревьев. Контрольные вопросы1. Чем отличаются сукцессии, протекающие в соответствии с моделями благоприятствования и толернатности? 2. Приведите примеры сукцессий, протекающих по модели ингибирования. 3. Приведите примеры сукцессий со сменой моделей. 12.5. Гетеротрофные сукцессии Движущей силой автотрофных сукцессий является солнечная энергия, усваиваемая растениями-продуцентами и передаваемая по пищевым цепям консументам и редуцентам. Однако подобно тому, как существуют гетеротрофные экосистемы, возможны и гетеротрофные сукцессии (их называют также деградационными). Эти сукцессии происходят при разложении мертвого органического вещества (детрита): трупа животного, «лепешки» экскрементов коровы, упавшего ствола дерева, лесной подстилки и т.д. В гетеротрофных сукцессиях происходит «эстафета» биоты, которая представлена беспозвоночными, грибами и бактериями. Гетеротрофная сукцессия в опавшей хвое сосны продолжается около 10 лет (Бигон и др., 1989). Поскольку опавшая хвоя постоянно покрывается новыми слоями опада, то изучение лесной подстилки от ее верхней границы до почвы позволяет судить об изменении биоты во времени. Сукцессия происходит постепенно, тем не менее ее можно условно разделить на три стадии: – первая. Длится около 6 месяцев, в течение которых происходит первый этап разложения хвои. Впрочем, до 50% живых сосновых хвоинок уже поражено грибом Coniosporium, который открывает эту сукцессию. После опадения хвои этот гриб быстро исчезает, и на ней поселяются Fusicoccum и Pullularia. В конце стадии массово развивается Desmazierella; – вторая. Длится два года. В число участников сукцессии, кроме Desmazierella, включаются Sympodiella и Helicoma, к которым добавляются почвенные клещи; – третья. Наиболее продолжительная, которая длится 7 лет. Основными деструкторами хвоинок становятся почвенные животные – ногохвостки, клещи и олигохеты-энхитреиды. Хвоя спрессовывается, после чего интенсивность разложения резко снижается и сукцессия вступает в стадию «климакса». Другой пример – сукцессия состава насекомых-ксилофагов, участвующих в разложении древесины. Различаются пять стадий этой сукцессии (Кашкаров, 1944) со своим населением детритофагов: живой древесины, ослабленной древесины, мертвого целого дерева, частично разложившейся древесины, полностью разложившейся древесины. Гетеротрофную сукцессию можно продемонстрировать в эксперименте на сенном растворе, где вначале расцветает пышная культура разнообразных бактерий, которые при добавлении прудовой воды сменяются простейшими из родов Hypotricha, Amoeba, Vorticella. После того, как ресурсы исчерпываются, сукцессия останавливается, а участвовавшие в ней организмы переходят в покоящееся состояние. Контрольные вопросы1. Какие сукцессии называются гетеротрофными? 2. Приведите пример гетеротрофной сукцессии. 3. Каким экспериментом можно проиллюстрировать гетеротрофную сукцессию? 12.6. Вторичные автогенные (восстановительные) сукцессии Восстановительные сукцессии по своему характеру мало отличаются от первичных, но, как отмечалось, протекают в экосистемах, которые частично или полностью нарушены внешним воздействием (как правило, деятельностью человека). Они обычно протекают быстрее, чем первичные, на их скорость влияет степень сохранности экосистемы и наличие источников диаспор для ее восстановления. Классический пример такой сукцессии – восстановление степи или леса на месте заброшенной пашни. Примерно 150 лет назад основными системами земледелия в России были залежно-переложная и подсечно-огневая (соответственно в степной и лесной зонах). Участок земли использовался как пашня 5-10 лет, после чего забрасывался, т. к. почва истощалась и обильно развивались сорняки, представлявшие первую стадию восстановительной сукцессии уже под пологом культурного растения. Контролировать сорняки при отсутствии тракторов и пестицидов человек не умел. Постепенно на заброшенном поле, через стадии полевых (сегетальных) сорняков, которые доминировали в первый год, и рудеральных видов, разраставшихся в последующие 3-5 лет, формировался степной травостой или вырастал лес. В ходе этой сукцессии восстанавливалось плодородие почвы, а сорные растения вытеснялись более мощными рудеральными, луговыми и лесными видами. Соответственно обогащалась и фауна. Восстановление растительности на залежах происходило достаточно долго – не менее 25 лет. Человек научился ускорять этот процесс. Дж. Кертис (J. Curtis) в двадцатых годах прошлого столетия значительно быстрее восстанавливал прерии за счет «искусственного семенного дождя» – смеси семян, собранных на сохранившихся участках прерии. Восстановление лугов высевом смеси семян, собранных в естественных луговых сообществах, практикуется сегодня в Англии. Ставропольский ботаник Д. Дзыбов разработал экономичный способ ускорения восстановительной сукцессии путем рассева сена с целинного степного участка на вспаханную почву. Семена высыпаются в почву, и сукцессия восстановления степи резко ускоряется: к пятому году в такой «агростепи» есть уже до 80% видов растений целинной степи. Для ускорения восстановительных сукцессий экосистем тундры на Аляске, нарушенных при добыче нефти, применяли азотные удобрения. Восстановительные сукцессии активно протекают не только на залежах, но и в посевах многолетних трав. Это позволяет использовать старовозрастные посевы многолетних трав для повышения биологического разнообразия сельскохозяйственных экосистем. Само собой разумеется, что в ходе восстановительных сукцессий меняется вся гетеротрофная биота экосистемы. В литературе приводятся данные об изменениях фауны птиц, грызунов, насекомых. Сукцессия состава населения птиц изучалась в прериях США (Одум, 1986). Количество видов гнездящихся птиц менялось от 15 до 239, причем на разных стадиях сукцессии состав птичьего населения существенно менялся: – на первой стадии (первые три года), когда доминировали травянистые растения, число видов птиц менялось от 15 до 40 видов, причем доминировали саванный воробей и луговой трупиал; – на второй стадии – кустарников, которая продолжалась 22 года, орнитофауна возросла до 136 видов, причем наиболее массовыми были: американская славка, овсянка, желтогрудая славка; – на третьей стадии – соснового леса, которая представляла 35-100 годы сукцессии, орнитофауна была самой богатой и достигала 239 видов. Самыми массовыми были древесница, тонагра, тиранн, верион желтолобый; – на заключительной стадии – дубово-гикориевого леса, которая формируется через 150-200 лет после забрасывания пашни, разнообразие птичьего население снизилось до 228 видов. К видам соснового леса добавляются американская кукушка, еще два вида древесницы и тиранн зеленый. Аналогичные данные о динамике фауны при восстановлении леса получила М.Н. Керзина (1956). Так восстановление ельника (Костромская область) сопровождалось изменением фауны грызунов и насекомых. На стадии открытой лесосеки (1-2 года после вырубки) фауна грызунов была представлена видами из рода Microtus, на смену которым при восстановлении леса приходили типичные лесные виды грызунов из рода Clethrionomys, причем на средней стадии сукцессии эти виды сочетались. Сходный характер имела и динамика насекомых (табл. 12). В целом энтомофауна обеднялась за счет резкого уменьшения числа цикад, уменьшалось количество особей других групп, исключая пауков, количество которых увеличивалось. Таблица 12 Динамика численности основных групп насекомых при восстановлении еловых, елово-пихтовых и сосновых лесов (на 100 взмахов сачком; по М.Н. Керзиной, 1956) Распространенным вариантом вторичной восстановительной сукцессии является постпастбищная демутация. При снижении пастбищной нагрузки начинается процесс восстановления пострадавших от выпаса высоких трав: овсяницы луговой, ежи сборной и костреца безостого – на лугах и ковылей – в степях. Патиенты-пастбищники (подорожники, одуванчик, лапчатка гусиная, клевер ползучий на лугу; полынь австрийская и типчак в степи) при отсутствии сильного выпаса теряют свои конкурентные преимущества и резко снижают обилие. К вторичным восстановительным сукцессиям относится изменение водной экосистемы в результате деэвтрофикации после того, как поступление биогенов в экосистему со стоками прекратилось. Такие сукцессии были изучены на озере Вашингтон крупным американским экологом Т. Эдмондсоном (1998). В ходе описанной сукцессии обильно размножившиеся цианобактерии постепенно вытесняются зелеными и диатомовыми водорослями и параллельно возрастает биоразнообразие зоопланктона и нектона (рыб). Избыточные биогены, поглощенные планктонными организмами, после их смерти оседают на дно водоема и захораниваются в сапропеле. После снижения содержания питательных элементов водная экосистема восстанавливается. Птицы заносят семена водных растений и икру рыб. Контрольные вопросы1. Какие сукцессии относятся к вторичным автогенным (восстановительным)? 2. Охарактеризуйте восстановительную сукцессию растительного сообщества на конкретном примере. 3. Приведите примеры изменения гетеротрофной биоты экосистемы в ходе восстановительной сукцессии. 4. Как протекают сукцессии деэвтрофикации водных экосистем? 12.7. Аллогенные сукцессии Аллогенные сукцессии вызываются факторами, внешними по отношению к экосистемам. Такие сукцессии чаще всего протекают в результате влияния человека, хотя возможны и природные аллогенные изменения. Их пример – изменение состава экосистемы поймы в результате меандрирования реки и углубления ею базиса эрозии русла. В итоге уровень поймы повышается, а длительность заливания и количество наилка уменьшаются. В результате этого в экосистемах пойм умеренной полосы последовательно сменяют друг друга сообщества ивняков, тополевников, вязовых и липово-дубовых лесов и полностью меняется состав травянистых видов. Меняется и состав гетеротрофной биоты, так как растительные сообщества предоставляют им соответствующую кормовую базу. Кроме того, состав растительного сообщества отражает длительность затопления в период паводка, что во многом предопределяет возможность выживания разных видов насекомых, птиц, почвенной фауны и т.д. Наиболее распространенным примером аллогенной сукцессии является изменение экосистем злаковников (лугов и степей) под влиянием выпаса. При высоких пастбищных нагрузках снижается видовое богатство, биологическая продукция, биомасса и происходят изменения состава растительного сообщества и сопровождающей его фауны: на смену высоким и хорошо поедаемым растениям приходят низкорослые и плохо поедаемые (последние могут быть и высокорослыми, как, например, виды чертополоха – род Carduus). В степных экосистемах различаются стадии пастбищной дигрессии: ковыльная, типчаковая (с Festuca valesiaca или F. pseudovina), полынковая с господством Artemisia austriaca. На заключительных стадиях такой сукцессии происходит рудерализация и массово развиваются однолетники, которые используют для быстрого роста перерывы между циклами стравливания и условия ослабленной конкуренции с многолетниками, которые угнетены выпасом. Сегодня чрезвычайно распространенным и нежелательным процессом изменения водных экосистем является их эвтрофикация – изменение в результате поступления большого количества элементов минерального питания, в первую очередь фосфора. Основной причиной эвтрофикации является смыв удобрений с полей, а также стоки животноводческих ферм. В ходе сукцессии первыми гибнут диатомовые водоросли, вслед за ними – зеленые водоросли, которые вытесняются цианобактериями. Некоторые штаммы цианобактерий выделяют в воду токсичные вещества, которые вызывают гибель многих организмов. При опускании на дно они разлагаются редуцентами, что требует большого количества кислорода. В итоге в таком обедненном кислородом водоеме гибнет большинство видов рыб и макрофитов (в первую очередь таких требовательных к чистой воде, как сальвиния, водокрас лягушечий, горец земноводный). В то же время, роголистник, рогоз широколистный и ряски могут выдерживать достаточно высокий уровень загрязнения и сохраняться в такой эвтрофицированной экосистеме. Вокруг эвтрофицированного водоема ощущается дурной запах, в мелководье скапливается бурая пена, содержащая погибший планктон. Если количество стоков ограничено или они уже прекращены, водная экосистема сама может справиться с загрязнением – произойдет процесс деэвтрофикации, описанный в предыдущем разделе. Успешно противостоять эвтрофикации могут макрофиты, активно усваивающие элементы питания. Однако самоочистительная способность водных экосистем ограничена, и потому если стоки поступают длительное время и в большом количестве – они гибнут. От эвтрофицикации следует отличать отравление водных экосистем промышленными и бытовыми стоками, которые содержат токсичные вещества, например тяжелые металлы. Если поступление токсикантов ограничено, то экосистема может справиться и с ними: ядовитые вещества попадут в организмы ее обитателей, а после их смерти будут захоронены на дне. На дне водоемов Куйбышевского, Волгоградского и других водохранилищ накопился многометровый слой токсичных осадков, образующихся в процессе самоочищения. Однако, если поступит значительное количество токсичных веществ и тем более если они будут поступать регулярно, водная экосистема восстановиться не сможет. Другим примером аллогенной сукцессии является изменение состава экосистем под влиянием радиации. Они были изучены Р. Уиттекером и Г. Вудвелом (Whittaker, Woodwell, 1972) на радиационном полигоне о. Лонг (США). При повышении дозы радиации (использовался источник гамма-излучения) происходила сукцессия, которая была как бы зеркальным отражением сукцессии зарастания скал, описанной Ф. Клементсом: вначале гибли деревья, потом кустарники, травы, мхи, и при самых высоких дозах радиации сохранялись только почвенные водоросли. В районе Чернобыля после аварии сукцессия прошла первую стадию: в лесах, расположенных вблизи АЭС, усох древостой (однако спустя несколько лет он начал интенсивно восстанавливаться). Как правило, аллогенные сукцессии сопровождаются снижением продуктивности и биоразнообразия, хотя на первых стадиях сукцессии эти параметры могут возрастать. Травяные сообщества при умеренном выпасе, леса при некотором влиянии отдыхающих или водные экосистемы при легкой эвтрофикации имеют более богатый видовой состав, чем те же сообщества, не испытывающие внешних влияний. В некоторых случаях при аллогенной сукцессии возрастает продукция, но снижается видовое богатство. Это наблюдается при изменении лугов под влиянием минеральных удобрений: число видов в сообществах уменьшается в 2-2,5 раза. Причина тому – обострение конкуренции при повышении уровня обеспечения ресурсами. Так большой ущерб видовому составу европейских горных лугов на бедных почвах принесли мероприятия по их улучшению путем внесения минеральных удобрений. Подобным образом снижение видового богатства может сопровождаться возрастанием биологической продукции и при эвтрофикации водоемов. Контрольные вопросы1. Расскажите об изменениях экосистем под влиянием интенсивного выпаса. 2. Какие изменения происходят в водных экоситемах при эвтрофикации? 3. Как влияют на экосистемы высокие дозы радиации? 12.8. природная эволюция экосистем Отличие эволюции экосистем от сукцессий заключается в том, что в ходе эволюции появляются новые комбинации видов и вырабатываются новые механизмы их сосуществования. Итогом природной эволюции является разнообразие экосистем, которое было рассмотрено в главе 11. В отличие от организмов экосистемы и их биоты как целостности не эволюционируют. Эволюция экосистем протекает как сеткообразный процесс, который складывается из более или менее независимой эволюции видов, входящих в их состав (Уиттекер, 1980). Для организмов одного трофического уровня главным механизмом эволюции является диверсификация, т.е. усиление несходства видов – эволюция не «к», а «от», что позволяет видам занимать разные экологические ниши и устойчиво сосуществовать в сообществе. Принцип разделения экологических ниш смягчает конкуренцию и может дополняться уже рассмотренными механизмами взаимного (как в семейных группах животных) или одностороннего благоприятствования (как у растений-нянь и их подопечных). Однако диверсификация – это не единственный механизм эволюции организмов одного трофического уровня. В ходе эволюции возможна и унификация экологических характеристик видов. В этом случае, обладая равными конкурентными способностями, виды могут сосуществовать в одном сообществе благодаря влиянию хищников и паразитов, которые ослабляют конкурирующие особи. Кроме того, такие виды могут занимать одну и ту же нишу в разных местах сообщества или поочередно в одном месте. Соотношение диверсификации и унификации, видимо, нетождественно в разных группах организмов. У взаимодействующих организмов разных трофических уровней в ходе эволюции может формироваться широчайшая гамма коадаптаций: от различных форм мутуализма (облигатного или протокооперации), аменсализма, комменсализма до приспособлений, смягчающих антагонистические отношения (между растениями и фитофагами, хищниками и жертвами, хозяевами и паразитами). Коадаптации отношений «растение – фитофаг» и «хищник – жертва» часто имеют диффузный (коллективный) характер: приспосабливаются друг к другу не отдельные виды (вид А– вид Б), а целые гильдии («команды»). Например в саванне приспосабливаются друг к другу «команды» трав и травоядных, древесных растений и веткоядных. Разумеется, приспособление в этом случае означает не взаимопомощь, а снижение интенсивности антагонистических отношений. Вследствие диффузной коадаптации в основе «триплетов» из организмов трех трофических уровней («растение – фитофаг – зоофаг», «фитофаг – хищник первого порядка – хищник второго порядка», «хищник первого порядка – хищник второго порядка – паразит») лежат не пищевые цепи, а пищевые сети, в которых виды могут замещать друг друга. В этом проявляется уже упомянутый принцип: количество функциональных ролей много меньше, чем число их потенциальных исполнителей. В то же время сеткообразность процесса эволюции экосистем не исключает возможности возникновения прочных и однозначных связей, в первую очередь в парах «хозяин – паразит» или при мутуалистических отношениях. Контрольные вопросы1. Какую роль в эволюции экосистем играет диверсификация видов? 2. Расскажите о роли унификации видов для их сосуществования. 3. Что такое диффузная коадаптация? 12.9. антропогенная эволюция экосистем Природная эволюция экосистем протекает в масштабе тысячелетий, в настоящее время она подавлена антропогенной эволюцией, связанной с деятельностью человека. Биологическое время антропогенной эволюции имеет масштаб десятилетий и столетий. Антропогенная эволюция экосистем разделяется на два больших класса (по типу процессов): целенаправленная и стихийная. В первом случае человек формирует новые типы искусственных экосистем. Результатом этой эволюции являются все агроэкосистемы, садово-парковые ансамбли, морские огороды бурых водорослей, фермы устриц и т.д. Однако к «плановой» эволюции всегда добавляются «неплановые» процессы – происходит внедрение спонтанных видов, например сорных видов растений и насекомых-фитофагов в агроценозы. Человек стремится подавить эти «неплановые» процессы, но это оказывается практически невозможным. Стихийная антропогенная эволюция экосистем играет большую роль, чем целенаправленная. Она более разнообразна и, как правило, имеет регрессивный характер: ведет к снижению биологического разнообразия, а иногда и продуктивности. Основу стихийной антропогенной эволюции составляет появление в экосистемах видов, непреднамеренно (реже преднамеренно) занесенных человеком из других районов. Масштаб этого процесса столь велик, что принял характер «великого переселения» и «гомогенизации» биосферы под влиянием человека (Lodge, 1993). Заносные виды называются адвентивными (Kornas, 1978, 1990), а процесс внедрения (инвазии) адвентивных видов в экосистемы – адвентивизацией. Причиной расселения адвентивных видов является антропогенное нарушение процессов саморегуляции экосистем при отсутствии видов-антагонистов (Элтон, 1960), как у североамериканской опунции в Австралии и амазонского водяного гиацинта в Африке и Азии, или, напротив, при появлении вида-патогена, к которому у местного вида, ставшего его хозяином, нет иммунитета, как в историях с гибелью Castanea dentata и нарушением африканских саванн вирусом коровьей чумы (см. 8.5). «Экологические взрывы» вызывает занос видов, которые оказываются ключевыми. Чаще такие «взрывы» вовсе не происходят, так как адвентивный вид вообще не вытесняет аборигенные виды из сообщества или если вытесняет, то берет на себя выполнение функциональной роли вытесненного вида. В процессе антропогенной эволюции могут усиливаться и некоторые виды местной флоры и фауны, которые оказались преадаптированными к режиму возрастающих антропогенных нагрузок. В прошлом они были связаны с местами локальных естественных нарушений – горных селей, пороев, вытаптываемых участков экосистем у водопоев, лежбищ крупных фитофагов, таких как зубры или бизоны, и т.д. Результатом антропогенной эволюции экосистем, кроме того, является: – уничтожение видов или снижение их генетического разнообразия (число страниц в Красных книгах во всех странах год от года увеличивается); – смещение границ природных зон – развитие процесса опустынивания в степной зоне, вытеснение травяной растительностью лесов у южной границы их распространения; – возникновение новых экосистем, устойчивых к влиянию человека (например экосистем сбитых пастбищ с обедненным видовым богатством); – формирование новых сообществ на антропогенных субстратах при их естественном зарастании или рекультивации. Однако основу антропогенной эволюции сегодня, безусловно, составляет процесс расселения заносных видов, называемый адвентивизацией. Вопрос этот столь актуален, что специально рассматривается в следующем разделе. Контрольные вопросы1. Чем отличаются целенаправленная и стихийная разновидности антропогенной эволюции экосистем? 2. Приведите примеры «экологических взрывов» при антропогенной эволюции экоситем. 3. К каким результатам приводит антропогенная эволюция экосистем? 12.10. Масштабы процесса адвентивизации биосферы В числе адвентивных видов имеются представители практически всех групп органического мира, хотя наиболее изучены адвентивные виды растений. Растения расселялись человеком при любых миграциях (кочевья, военные походы, торговые маршруты и т.д.). Однако особенно активным переселение растений с материка на материк стало после открытия Америки Колумбом. При этом поток растений из Старого света в Новый свет оказался более мощным, чем в обратном направлении. Имеют место феномены «африканизации» американских саванн (White, 1977) и «европеизации» средиземноморских сообществ Калифорнии (Noe, Zedler, 2001). Первый эпизод был связан с усилением потока диаспор из Африки с сеном, на котором в трюмах спали черные рабы, и одновременным разрушением травяного яруса саванн под воздействием крупного рогатого скота. В этих условиях получили распространение африканские злаки Hypperhenia ruta, Panicum maximum, Brachiaria mutica. В Калифорнии большая часть видов из естественных однолетних злаковников вытеснена европейскими Bromus mollis и Lolium multiflorum. На сегодняшний день картина адвентивизации флор разных материков выглядит следующим образом (Lonsdale, 1999): Северная Америка – 19%, Австралия – 17%, Южная Америка – 13%, Европа – 9%, Африка – 7%, Азия – 7%. Максимальная доля З.в. выявлена в сельскохозяйственных и городских экосистемах – 31%, далее следуют леса умеренной полосы, во флоре которых доля З.в. достигает 22%. В биоме средиземноморских склерофитных кустарников также много З.в. – 17%. Этот показатель резко снижается у альпийской растительности (11%), в саваннах (8%) и пустынях (6%). Адвентивные виды есть в составе флоры любого резервата, кроме Антарктиды (где вообще нет растений). К числу адвентивных относится большинство видов сорных растений, которые перевозились из района в район с культурными растениями, а также многие рудеральные растения, распространявшиеся при нарушении человеком естественных экосистем. На юго-востоке европейской части России быстро расселяются агрессивные рудеральные виды из родов амброзия и циклахена, которые образуют чистые заросли. Особенно легко расселяются водные адвентивные виды. В последние годы во многих водоемах тропического и субтропического поясов массово расселились водный гиацинт и сальвиния назойливая. Они наносят значительный экономический ущерб, в особенности в странах Африки, Юго-Восточной Азии и в Австралии. В оросительных каналах Европы большой вред наносит элодея канадская, а в водоемах Канады – разросшаяся там европейская уруть колосистая. В оросительных системах США много хлопот доставляет африканское растение аллигаторова трава. В Австралии рисовые поля зарастают занесенным из Азии куриным просом. Экосистеме Средиземного моря наносит ущерб тропическая водоросль каулерпа, выделяющая в воду сильнодействующие токсины (по-видимому, каулерпа занесена с балластными водами, хотя возможно, что виновниками ее расселения были аквариумисты). Картина распространения адвентивных видов животных менее полная. Среди них есть немало опасных видов, способных из-за отсутствия естественных врагов, контролирующих их численность, нанести значительный ущерб экосистемам. Общеизвестны последствия натурализации кролика в Австралии. В последние годы экосистемы Черного, Азовского и Каспийского морей страдают от видов гребневика – беспозвоночного животного, занесенного с балластными водами судов. Гребневик поедает икру и молодь рыбы. Экосистемы североамериканских Великих озер изменяются под влиянием европейского окуня, отличающегося прожорливостью и уничтожающего молодь местных видов рыб. Большой ущерб этим экосистемам (а также судам и промышленным предприятиям) наносят экзотические виды моллюсков (в частности дрейссена, которая занесена из Европы). Бурно размножаясь, они забивают водопроводные трубы и облепляют днища судов. В озере Иссыккуль недавно появился занесенный с Дальнего Востока малоценный агрессивный вид рыбы элеотрис, а по рекам и озерам Подмосковья уже давно расселился дальневосточный ротан, поедающий молодь рыбы. В последние годы он расселяется в верхней Волге (уже зарегистрирован у г. Саратова). В целом процесс адвентивизации экосистем особенно активизировался после 1950 г. благодаря быстрому развитию транспортных средств, а после 1970 г. вследствие развития процессов глобализации рынка и экономики. После 2030 г. прогнозируется усиление адвентивизации вследствие потепления климата (di Castri, 1990). Однако потепление климата может неодинаково сказаться на разных биомах. Экосистемы тундр, к примеру, обладают высокой буферностью, и потому при потеплении климата их инвазивный потенциал может сохраниться прежним за счет того, что изменится соотношение между видами в сообществах: роль сосудистых растений увеличится, а споровых – уменьшится. Анализ последствий антропогенной эволюции показывает, что человек должен быть осмотрительным при плановой интродукции вида из одного района в другой и более осторожным в случаях, когда может произойти непреднамеренный занос видов, и принимать меры к уже распространившимся заносным видам, если они пагубно влияют на естественные экосистемы. Контрольные вопросы1. Какое историческое событие рассматривается как начало интенсивной адвентивизации флоры и фауны? 2. Расскажите об африканизации американских саванн и европеизации злаковников Калифорнии. 3. Дайте общую картину современного уровня адвентивизации флоры в глобальном масштабе. 4. Приведите примеры пагубного влияния на экосистемы адвентивных видов животных. 5. Какие факторы будут способствовать процессу антропогенной гомогенизации биосферы в будущем? Темы докладов на семинарских занятиях1. Значение циклической динамики экосистем для поддержания их устойчивости. 2. Развитие взглядов Ф. Клементса на природу экологической сукцессии. 3. Возможности использования потенциала восстановительных сукцессий для сохранения экосистем. 4. Аллогенные сукцессии как фактор разрушения биосферы. 5. Природная и антропогенная ветви эволюции экосистем: сравнение и оценка вклада в изменение биосферы. Глава 13. Биосфера При рассмотрении экосистем мы говорили о потоках энергии и вещества. Для характеристики процесса трансформации энергии мы приводили «закон Линдемана» (правило 10%) и обсуждали отклонения от этого закона, а закономерности циклической циркуляции веществ пока не обсуждали. Это было сделано сознательно: при пространственной неопределенности (безранговости) экосистем говорить о круговоротах веществ в пределах одной экосистемы невозможно. По этой причине мы рассматриваем круговороты веществ только в самой большой экосистеме – биосфере. Истоки представлений о биосфере уходят в работы А. Лавуазье, Ж.Б. Ламарка и А. Гумбольдта (см. 1.1), однако термин «биосфера» предложил австрийский ученый Э. Зюсс в 1875 г. Этим термином он обзначил одну из оболочек Земли – пространство, в котором есть жизнь. Целостное учение о биосфере создал русский ученый В.И. Вернадский (1926), обосновавший геологическую преобразующую роль живых организмов. Они являются основной геологической силой, которая создала биосферу и поддерживает ее состояние в настоящее время. К понятию «биосфера» близко понятие “гея” (от греч. Гея – богиня Земли), которое в 70-х гг. нашего столетия предложил английский ученый Дж. Ловелок. 13.1. Биосфера как оболочка Земли Кроме биосферы Зюсс выделил еще три оболочки – атмосферу, гидросферу и литосферу. Атмосфера – самая наружная газообразная оболочка Земли, она простирается до высоты 100 км. Основные составляющие атмосферы – азот (78%), кислород (20,95%), аргон (0,93%), диоксид углерода (0,03%). Атмосфера является отчасти продуктом жизнедеятельности организмов, так как кислород атмосферы – это результат деятельности фотосинтезирующих организмов – цианобактерий и растений. На высоте 20-45 км расположен озоновый слой, содержание озона в нем примерно в 10 раз выше, чем в атмосфере у поверхности Земли. Этот слой защищает поверхность планеты от избытка ультрафиолетовых лучей, неблагоприятно влияющих на живые организмы. Между атмосферой и земной поверхностью происходит постоянный обмен теплом, влагой и химическими элементами. На состояние атмосферы влияет хозяйственная деятельность человека, благодаря которой в ней появились метан, оксиды азота и другие газы, вызывающие атмосферные процессы – парниковый эффект, разрушение озонового слоя, кислые дожди, смог. Гидросфера оказывается не сплошной оболочкой: моря и океаны покрывают Землю только на 2/3, остальное занято сушей. На суше гидросфера представлена фрагментарно – озерами, реками, грунтовыми водами (табл. 13). Таблица 13 Распределение водных масс в гидросфере Земли (по Львовичу, 1986) Гидросфера на 94% представлена солеными водами океанов и морей, а вклад рек в водный бюджет планеты в 10 раз меньше, чем количество водных паров в атмосфере. Три четверти пресной воды недоступны организмам, так как законсервированы в ледниках гор и полярных шапках Арктики и Антарктиды. Гидросфера испытывает все возрастающее влияние хозяйственной деятельности человека, которая ведет к нарушению рассматриваемого ниже биосферного круговорота воды (ускорение процесса таяния ледников, уменьшение количества жидкой пресной воды и увеличение парообразной воды в результате испарений мелиорированных агроэкосистем. Литосфера – это верхняя твердая оболочка Земли, мощность которой составляет 50-200 км. Верхний слой литосферы называется земной корой. Вещества, слагающие литосферу, частично образованы за счет деятельности организмов, и это не только торф, каменный уголь, горючие сланцы, но и куда более распространенный карбонат кальция, образовавшийся из моллюсков и других морских животных. Совершенно особую среду представляет собой почва (см. 2.6), находящаяся на границе литосферы и атмосферы. В настоящее время на литосферу оказывает сильнейшее техногенное влияние человек, особенно за счет развития процессов эрозии, увеличения твердого стока, сжигания ископаемого топлива и создания инженерных сооружений. Искусственные (техногенные) грунты уже покрывают более 55% площади суши Земли, а в ряде урбанизированных районов (Европа, Япония, Гонконг и др.) они покрывают 95-100% территории и их мощность достигает нескольких десятков метров. Суммарная площадь, покрытая всеми видами инженерных сооружений (здания, дороги, водохранилища, каналы и т.п.) в 2000 г. достигла 1/6 площади суши. Биосфера охватывает всю гидросферу, часть атмосферы и часть литосферы. Ее верхняя граница расположена на высоте 6 км над уровнем моря, нижняя – на глубине 15 км в толще земной коры (на такой глубине обитают бактерии в нефтяных водах) и 11 км в океане. По сравнению с диаметром Земли (13000 км) биосфера – это тонкая пленка на ее поверхности. Однако основная жизнь в биосфере сконцентрирована в значительно более узких пределах, охватывающих всего несколько десятков метров на континентах, в атмосфере и в океане (табл. 14). Таблица 14 Структура биомассы биосферы (сухое вещество) В биосфере происходит круговорот всех веществ, т.е. их многократное участие в процессах синтеза и разрушения органического вещества. В круговоротах в той или иной степени участвуют практически все химические элементы, однако наиболее важными для биосферы являются круговороты воды, кислорода, углерода, азота, фосфора. Контрольные вопросы1. С именами каких ученых связано рождение и развитие представления о биосфере? 2. Назовите оболочки Земли, которые выделил Э. Зюсс. 3. Расскажите о составе атмосферы. 4. Какова структура гидросферы? 5. Охарактеризуйте масштаб техногенных нарушений литосферы человеком. 6. Назовите верхнюю и нижнюю границы биосферы. 13.2. Основные круговороты веществ в биосфере Важнейшей характеристикой биосферы являются протекающие в ней круговороты веществ, которые обусловлены биогенными и абиогенными причинами. В настоящее время они нарушаются хозяйственной деятельностью человека, что ведет к нарушению биосферы и может иметь тяжелые последствия для будущих поколений землян. Рассмотрим круговороты наиболее важных биогенов – углерода, кислорода, азота, воды. 13.2.1. Круговорот углерода Это один из самых важных биосферных круговоротов, поскольку углерод составляет основу органических веществ. В круговороте особенно велика роль диоксида углерода (рис. 23). Рис. 23. Круговорот углерода в биосфере. Запасы «живого» углерода в составе организмов суши и океана составляют, по разным данным, 550-750 Гт (1 Гт равна 1 млрд т), причем 99,5% этого количества сосредоточено на суше, остальное – в океане. Кроме того, в океане содержится до 700 Гт в составе растворенного органического вещества. Запасы неорганического углерода значительно больше. Над каждым квадратным метром суши и океана находится 1 кг углерода атмосферы, и под каждым квадратным метром океана при глубине 4 км – 100 кг углерода в форме карбонатов и бикарбонатов. Еще больше запасы углерода в осадочных породах – в известняках содержатся карбонаты, в сланцах – керогены и т.д. Примерно 1/3 «живого» углерода (около 200 Гт) циркулирует, т.е. ежегодно усваивается организмами в процессе фотосинтеза и возвращается обратно в атмосферу, причем вклад океана и суши в этот процесс примерно сходный. Несмотря на то, что биомасса океана много меньше биомассы суши, его биологическая продукция создается множеством поколений краткоживущих водорослей (соотношение биомассы и биологической продукции в океане примерно такое же, как в пресноводной экосистеме, см. 11.1). До 50% (по некоторым данным – до 90%) углерода в форме диоксида возвращают в атмосферу микроорганизмы-редуценты почвы. В этот процесс равный вклад вносят бактерии и грибы. Возврат диоксида углерода при дыхании всех прочих организмов, таким образом, меньше, чем при деятельности редуцентов. Некоторые бактерии, кроме диоксида углерода, образуют метан. Выделение метана из почвы возрастает при переувлажнении, когда создаются анаэробные условия, благоприятные для деятельности метанообразующих бактерий. По этой причине резко увеличивается выделение метана лесной почвой, если древостой вырублен и вследствие уменьшения транспирации происходит ее заболачивание. Много метана выделяют рисовые поля и домашний скот. В настоящее время отмечается нарушение круговорота углерода в связи со сжиганием значительного количества ископаемых углеродистых энергоносителей, а также при дегумификации пахотных почв и осушении болот. В целом содержание диоксида углерода в атмосфере ежегодно возрастает на 0,6%. Еще быстрее возрастает содержание метана – на 1-2%. Эти газы являются главными виновниками усиления парникового эффекта, который на 50% зависит от диоксида углерода и на 33% – от метана. Последствия усиления парникового эффекта для биосферы неясны, наиболее вероятный проноз – потепление климата. Однако поскольку «машинами» климата являются морские течения, то вследствие их изменения при таянии ледников в ряде районов возможно существенное похолодание (в том числе в Европе в результате изменения течения Гольфстрим). Под влиянием изменения концентрации диоксида углерода значительно учащаются крупные стихийные бедствия (наводнения, засухи и т.д.) Приведенные данные характеризуют биогенный круговорот углерода. В круговороте участвуют и геохимические процессы, при которых происходит обмен атмосферного углерода и углерода, содержащегося в горных породах. Однако данных о скорости этих процессов нет. Полагают лишь, что их интенсивность менялась в истории планеты и парниковый эффект, который наблюдается сегодня, многократно проявлялся в прошлом при усилении геохимических процессов с выделением диоксида углерода и при ослаблении процессов, которые “оттягивали” его из атмосферы. Для того, чтобы вернуть круговороту углерода равновесие, необходимо увеличить площадь лесов и сократить выброс газов при сжигании углеродистых энергоносителей. Контрольные вопросы1. Каково соотношение количества «живого» углерода на суше и в океане? 2. Каково соотношение количества «мертвого» углерода в атмосфере и в океане? 3. Какая доля «живого» углерода ежегодно вовлекается в круговорот? 4. Какая доля углерода возвращается в атмосферу редуцентами наземных экосистем? 5. Перечислите факторы, нарушающие круговорот углерода. 6. Какие последствия может иметь усиление парникового эффекта? 13.2.2. Круговорот воды Вода испаряется не только с поверхности водоемов и почв, но и живых организмов, ткани которых на 70 % состоят из воды (рис. 24). Большое количество воды (около 1/3 всей воды осадков) испаряется растениями, особенно деревьями: на созидание 1 кг органического вещества в разных районах они расходуют от 200 до 700 л воды. Рис. 24. Круговорот воды в биосфере. Различные фракции воды гидросферы участвуют в круговороте по-разному и с разной скоростью. Так полное обновление воды в составе ледников происходит за 8 тыс. лет, подземных вод – за 5 тыс. лет, океана – за 3 тыс. лет, почвы – за 1 год. Пары атмосферы и речные воды полностью обновляются за 10-12 суток. До развития цивилизации круговорот воды был равновесным, однако в последние десятилетия вмешательство человека нарушает этот цикл. В частности уменьшается испарение воды лесами ввиду сокращения их площади и, напротив, увеличивается испарение с поверхности почвы при орошении сельскохозяйственных культур. Испарение воды с поверхности океана уменьшается вследствие появления на ее значительной части пленки нефти. Влияет на круговорот воды потепление климата, вызываемое парниковым эффектом. При усилении этих тенденций могут произойти существенные изменения круговорота, опасные для биосферы. Важную роль в годовом водном балансе биосферы играет океан (табл. 15). Испарение с его поверхности примерно в два раза больше, чем с поверхности суши. Таблица 15 Годовой водный баланс Земли (по Львовичу, 1986) Контрольные вопросы 1. Какой вклад в испарение воды вносит океан? 2. Какой вклад в испарение воды вносят растения? 3. С какой скоростью осуществляется круговорот разных фракций воды? 4. Расскажите о причинах нарушения круговорота воды. 13.2.3. Круговорот азота Циркуляция азота в биосфере протекает по следующей схеме (рис. 25): – перевод инертного азота атмосферы в доступные для растений формы (биологическая азотфиксация, образование аммиака при грозовых разрядах, производство азотных удобрений на заводах), – усвоение азота растениями, – переход части азота из растений в ткани животных, – накопление азота в детрите, – разложение детрита микроорганизмами-редуцентами вплоть до восстановления молекулярного азота, который возвращается в атмосферу Рис. 25. Круговорот азота в биосфере. В морских экосистемах азотфиксаторами являются цианобактерии, связывающие азот в аммиак, который усваивается фитопланктоном. В настоящее время вследствие уменьшения доли естественных экосистем, биологическая азотфиксация стала меньше промышленной фиксации азота (соответственно 90-130 и 140 миллионов тонн в год), причем к 2020 г. ожидается увеличение промышленной азотфиксации на 60%. До половины азота, вносимого на поля, вымывается в грунтовые воды, озера, реки и вызывает эвтрофикацию водоемов. Значительное количество азота в форме оксидов азота поступает в атмосферу, а затем в почву и водоемы в результате ее загрязнения промышленностью и транспортом (кислотные дожди). Этот азот был изъят из атмосферы экосистемами геологического прошлого и длительное время находился «на депоненте» в угле, газе, нефти, при сжигании которых он возвращается в круговорот. Например в США с атмосферными осадками выпадает 20-50 кг/га в год азота, а в отдельных районах эмиссия достигает 115 кг/га. Экологически безопасной считается величина эмиссии азота 10-30 кг/га в год. При более высоких нагрузках происходят значительные изменения в экосистемах: почвы подкисляются, происходит выщелачивание питательных элементов в глубокие горизонты, возможно усыхание древостоев и массовое развитие заносных видов-нитрофилов. Кроме того, высокое содержание азота в растениях, выросших на загрязненных азотом почвах, повышает их поедаемость, что может привести к выпадению из растительных сообществ даже доминантных видов. Так в некоторых пустошах Западной Европы после того, как в вереске повысилось содержание азота, массово размножился вересковый жук (его количество достигало 2000 экземпляров на 1 м 2 ). Жук практически полностью выел этот кустарник из сообществ. Те же изменения в составе загрязняемых промышленным азотом сообществ отмечены и в Калифорнии. Однако не всегда кислотные дожди оказывают пагубное влияние на экосистемы. Экосистемы степной зоны, где почвы имеют слабощелочную реакцию, от выпадения кислотных дождей не только не страдают, но даже увеличивают свою продуктивность за счет дополнительного азота. Восстановление естественного круговорота азота возможно за счет уменьшения производства азотных удобрений, резкого сокращения промышленных выбросов оксидов азота в атмосферу и расширения площади посевов бобовых, которые симбиотически связаны с бактериями-азотфиксаторами. Контрольные вопросы1. Перечислите основные этапы круговорота азота. 2. Через какие каналы атмосферный азот попадает в экосистемы? 3. Какой вклад в круговорот вносит техногенный азот? 4. Расскажите о вкладе в круговорот азота сжигания азотсодержащих энергоносителей. 5. Что нужно сделать для нормализации круговорота азота? 13.2.4. Круговорот кислорода Кислород атмосферы имеет биогенное происхождение и его циркуляция в биосфере осуществляется путем пополнения запасов в атмосфере в результате фотосинтеза растений и поглощения при дыхании организмов и сжигании топлива в хозяйстве человека (рис. 26). Кроме того, некоторое количество кислорода образуется в верхних слоях атмосферы при диссоциации воды и разрушении озона под действием ультрафиолетового излучения, и часть кислорода расходуется на окислительные процессы в земной коре, при вулканических извержениях и др. Рис. 26. Круговорот кислорода в биосфере. Этот круговорот очень сложный, так как кислород вступает в разнообразные реакции и входит в состав очень большого числа органических и неорганических соединений, и замедленный. Для полного обновления всего кислорода атмосферы требуется около 2 тысяч лет (для сравнения: ежегодно обновляется около 1/3 диоксида углерода атмосферы). В настоящее время поддерживается равновесный круговорот кислорода, хотя в крупных густонаселенных городах с большим количеством транспорта и промышленных предприятий возникают локальные нарушения. Однако отмечено ухудшение состояния озонового слоя и образование «озоновых дыр» (областей с пониженным содержанием озона) над полюсами Земли, что представляет экологическую опасность. Временные «дыры» возникают также над обширными районами вне полюсов (в том числе и над континентальными районами России). Причиной этих явлений является попадание в озоновый слой хлора и оксидов азота, которые образуются в почве из минеральных удобрений при их разрушении микроорганизмами, а также содержатся в выхлопных газах автомобилей. Эти вещества разрушают озон с более высокой скоростью, чем он может образовываться из кислорода под влиянием ультрафиолетовых лучей. Сохранение озонового слоя – одна из глобальных задач мирового сообщества. Для прекращения разрушения озонового слоя и его восстановления необходимо отказаться от использования хлорсодержащих веществ – хлорфторуглеродов (фреонов), используемых в аэрозольных упаковках и холодильных установках. Необходимо также уменьшение количества выхлопных газов двигателей внутреннего сгорания и доз азотных минеральных удобрений в сельском хозяйстве. Содержание озона может увеличиваться в приземном слое атмосферы, так как озон является фотооксидантом, образующимся из оксида азота и углеводородов под влиянием ультрафиолетовых лучей. В этом случае он оказывается опасным загрязнителем, вызывающим раздражение дыхательных путей человека. Однако отрицательно сказывается на здоровье человека и чрезмерно низкое содержание озона в атмосфере. Контрольные вопросы1. Назовите основной источник пополнения запаса кислорода в атмосфере. 2. Укажитие, при каких процессах происходит поглощение кислорода из атмосферы. 3. За какое время происходит обновление запаса кислорода в атмосфере? 4. Охарактеризуйте проблему сохранения озонового слоя атмосферы. 13.2.5. Круговорот фосфора О круговороте фосфора за обозримое время можно говорить лишь условно. Будучи гораздо тяжелее углерода, кислорода и азота, фосфор почти не образует летучих соединений – он стекает с суши в океан, а возвращается в основном при подъеме суши в ходе геологических преобразований. По этой причине круговорот фосфора называют «открытым» (рис. 27). Рис. 27. Круговорот фосфора в биосфере. Фосфор содержится в горных породах, откуда выщелачивается в почву и усваивается растениями, а затем по пищевым цепям переходит к животным. После разложения мертвых тел растений и животных не весь фосфор вовлекается в круговорот, часть его вымывается из почвы в водоемы (реки, озера, моря). Там фосфор оседает на дно и почти не возвращается на сушу, лишь небольшое количество его возвращается с выловленной человеком рыбой или с экскрементами птиц, питающихся рыбой. Скопления экскрементов морских птиц служили в недалеком прошлом источником ценнейшего органического удобрения – гуано, но в настоящее время ресурсы гуано практически исчерпаны. Отток фосфора с суши в океан усиливается вследствие возрастания поверхностного стока воды при уничтожении лесов, распашке почв и внесении фосфорных удобрений. Поскольку запасы фосфора на суше ограничены, а его возврат из океана проблематичен (хотя в настоящее время активно исследуются возможности его добычи со дна океана), в будущем в земледелии возможен острый дефицит фосфора, что вызовет снижение урожаев (в первую очередь зерна). Поэтому необходима экономия ресурсов фосфора. Контрольные вопросы1. Почему круговорот фосфора называется открытым? 2. Где сконцентрированы запасы фосфора? 3. Почему фосфор концентрируется на дне океанов? 4. Какие последствия для сельского хозяйства будет иметь исчерпание запасов фософора. 13.3. Ноосфера В заключение главы необходимо сказать несколько слов о расхожем (особенно по страницам популярных «зеленых» экологических изданий) термине «ноосфера», который был независимо внедрен в экологический обиход П. Терьяром де Шарденом и В.И. Вернадским. Однако если Терьяр де Шарден понимал под ноосферой в первую очередь глобальное развитие «коллективного разума», то Вернадский считал, что этот «коллективный разум» должен преобразовать биосферу, улучшив условия для жизни человека на планете. Вернадский исходил из сциентистского взгляда на отношения человека и природы, т.е. считал, что наука может решить практически любые проблемы вплоть до управления основными циклами веществ и перехода человека на «автотрофное питание» с непосредственным использованием солнечной энергии для производства продуктов питания (минуя посреднеческую роль растений). Взгляды Вернадского на ноосферу – пример экологического утопизма. Система связей в биосфере («биосферный рынок») столь сложна, что человек не может управлять ей. Серьезные вмешательства в биосферные круговороты ведут к резкому обострению экологической ситуации, что уже наблюдается сегодня (разрушение озонового экрана, потепление климата, глобальное загрязнение среды, появление новых «экологических болезней» и т.д.). Человек может сохраниться только вместе с биосферой, «встроив» свою хозяйственную деятельность в биосферные циклы. Н.Н. Моисеев писал о возможности «коадаптации человека и биосферы» и формирования на этой основе некого «квазиустойчивого состояния» последней, при котором изменения круговоротов веществ не будут превышать пороговых значений, начиная с которых могут произойти необратимые изменения. Это новое состояние биосферы возможно при построении мирового сообщества устойчивого развития, однако рассмотрение этой проблемы лежит за рамками общей экологии. Темы докладов на семинарских занятиях1. Структура биосферы и ее соотношение с другими оболочками Земли по Э. Зюссу. 2. Опасность антропогенных нарушений круговоротов веществ в биосфере. 3. Критическая оценка представлений В.И. Вернадского о ноосфере. |
|
||
Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх |
||||
|