• Калейдоскоп антигенов
  • Индивидуальность — превыше всего
  • Обреченные на гибель
  • Чистые линии
  • Вопреки инерции

    «В последние два десятилетия иммунологическая природа отторжения тканевых трансплантатов стала общепризнанной и все аспекты процессов отторжения находятся под жестким экспериментальным контролем».

    (Лесли Брент)

    Отпечатки пальцев


    Итак, на вопрос «Что такое иммунитет?» чаше всего получаешь ответ: «Это состояние невосприимчивости организма к действию микробов; задача организма — не пустить, уничтожить, выкинуть возбудителей болезни».

    Ну, а если в организм, в его кровь, под кожу, в мышцы попадает не микроб, а что-нибудь другое, пусть даже не живое, но биологически чуждое по своему происхождению? Например, чуждые клетки крови, или чужеродный белок, или змеиный яд, или хирургически пересаженная частица чужой ткани? Что тогда? Мы уже знаем с вами, «что тогда». Волею времени, волею прогресса мы оказались умнее, а правильнее сказать, образованнее, ученее Алексиса Карреля. Мы знаем, что он напрасно старался пересадить чужеродную ткань или чужеродный орган. Все это будет разрушено, отторгнуто. Во всяком случае, организм будет к этому стремиться. Если же он не справится с этим — может и погибнуть. Одним из основных условий жизни является способность сохранять свое внутреннее постоянство в самых разнообразных изменяющихся условиях.

    Иммунитет — это такие силы живого организма, которые направлены не только против микробов. Они охраняют внутреннее постоянство организма от вторжения живых и мертвых, биологически инородных тел или веществ вне зависимости от их микробного или немикробного происхождения.

    Основное специфическое оружие иммунологической армии — антитела. Антитело по-русски значит противотело, то есть нечто, направленное против чего-то. Против микроба, который пробрался в организм, против микробных ядов, против введенных чужеродных клеток или тканей, против любого чужеродного белка, попавшего в кровь.

    Все, что при попадании в кровь приводит к образованию антител, получило название антигена. Вызывать к жизни продукцию антител, а следовательно, быть антигеном, может яичный белок и пыльца растений, микроб брюшного тифа и сыворотка какого-нибудь животного, экстракт из чужеродной ткани и сама пересаженная ткань. И любые другие белковые чужеродные вещества, и даже некоторые сложные небелковые вещества животного, микробного или растительного происхождения — полисахариды и липо-полисахариды. (Вот и еще несколько новых сложных терминов. Кто знает, может, нам это еще понадобится дальше.)

    Давайте запомним: антитела вырабатываются в ответ на попадание в кровеносную систему организма антигенов. Обратите внимание на парадоксальность этого определения. Объясняем, что такое антиген, и говорим: это такое вещество, в ответ на которое у человека и животных, вырабатываются антитела. Формулируем понятие антитела и говорим: это такая субстанция, которая появляется в крови людей и животных при попадании или введении антигена. Эти два понятия как бы существуют только в связи друг с другом. Не существует антигенов, если против них не возникают антитела, и наоборот. Однако парадоксальность эта не должна нас смущать. К концу средней школы мы привыкаем к подобным парадоксам. Вспомним противоположные полюсы магнита — северный полюс существует потому, что есть южный. Не существует и отвлеченного положительного заряда электричества — это всего лишь заряд, противоположный отрицательному.

    Так или иначе к терминам «антиген» и «антитело» нам придется привыкнуть, ибо без них мы не сможем двигаться иммунологическими тропами, не сможем размышлять о науке, о ее особенностях, открытиях, разочарованиях. Поэтому давайте сейчас снова приостановимся, чтобы осмыслить второй этап нашей науки — тканевую иммунологию.

    Калейдоскоп антигенов

    Антитела строго специфичны. При внедрении бактерий брюшного тифа возникают антитела против них, и только против них, а при внедрении микробов холеры — только против холерных вибрионов. Антитела противобрюшнотифозные не трогают никак возбудителей холеры, и, наоборот, противохолерные иммунные сыворотки борются только с холерным микробом, но не с бациллами брюшного тифа. Следовательно, антигены возбудителей брюшного тифа и холеры различны. Точно так же различаются между собой антигены других бактерий — чумы, дизентерии, сибирской язвы, дифтерии, туляремии. Все микроорганизмы отличаются друг от друга по целому ряду признаков, и прежде всего по своим антигенам. Но не подумайте, что каждый из них состоит всего из одного-единственного антигена. Нет. Каждый состоит из целого набора антигенов.

    Брюшнотифозная бактерия. Она представляет собой микроскопическую палочку длиной 1—2 микрона, окруженную тоненькими «ножками» — жгутиками. В составе этого микроба десяток антигенов. Из них три главных: в жгутиках Н-антиген, а в теле О-антиген и Vi-антиген. Последний связан с агрессивными качествами микроба.


    Доктор делает укол


    Вспомним работы Борде и Чистовича. Введение в кровь животному не микробных антигенов, а других чужеродных веществ, например кровяных клеток человека, приводит к возникновению антител, которые взаимодействуют только с человеческими клетками и склеивают их. Антитела возникают и если в кровь животному ввести не клетки, а бесклеточные белки: например, кровяную сыворотку другого животного или человека. Эти антитела будут взаимодействовать с человеческими и только человеческими белками, не реагируя на белки животных.

    Будем иммунизировать кроликов сывороточными белками человека, лошади, барана, собаки или кошки. Получим иммунные сыворотки с антителами против каждого вида белков. И каждая сыворотка будет преципитировать, осаждать, только соответствующие ей белки, демонстрируя тем самым различия антигенов разных видов животных между собой.

    Если даже у микробов по нескольку антигенов, то какое же громадное количество их должно быть в крови и тканях человека! Уж конечно, не один десяток. Только в кровяной сыворотке их около тридцати.

    Особенно наглядно это продемонстрировал французский ученый, выходец из России Петр Грабарь. Мы уже говорили о химии в иммунологии. Теперь будем говорить про физико-химические методы. Грабарь иммунизировал кролика человеческой сывороткой и с полным основанием ожидал, что в ответ на каждый антиген сыворотки образуется свое антитело. Не сомневайтесь — так оно и было. После этого он поместил человеческую сыворотку в студень из агар-агара и пропустил электрический ток. Разные белки-антигены распределились в электрическом поле по-разному, поскольку все они отличались размерами своих молекул и зарядов. После этого П. Грабарь обработал студень кроличьей сывороткой, содержащей антитела, и каждое антитело соединилось со своим антигеном. Произошла множественная преципитация, которая замутила студень в 19 разных местах. Возникло 19 дуг преципитации. Гениально просто, а потому удивительно красиво. Метод усовершенствовали. В результате удалось обнаружить в сыворотках людей по 25—30 разных антигенов. Это сегодня! А что будет завтра?!

    Каждый вид клетки человеческого организма содержит, по-видимому, не меньшее число антигенов. Подробнее всего в этом отношении изучены красные кровяные шарики — эритроциты. У одних людей в эритроцитах находится антиген А, у других — В, у третьих — и А и В, а у четвертых нет ни А, ни В. Эта система антигенов — АВ0 (а-б-ноль) была открыта в 1901 году. В 1928 году была обнаружена еще одна антигенная система ММ: эритроциты одних людей содержат антиген М, других N. В 1940 году открыли систему Резус (Rh) более чем из восьми антигенов, встречающихся в разных комбинациях. Затем нашли антигенные системы Даффи, Кел-Келано и ряд других. В настоящее время детально изучены 12 систем. Всего в общей сложности более 70 различных антигенов, которые составляют своеобразный антигенный узор эритроцитов.

    Исследования других клеток и тканей показали, что они в антигенном отношении повторяют рисунок эритроцитов, как зеркала повторяют узор в калейдоскопе. Но, кроме этого, другие клетки имеют еще и собственные антигены, которых нет в эритроцитах.

    Человеческие ткани не исключение. Антигенное строение животных такое же сложное. И у каждого вида животных свои, отличающиеся от человеческих, антигены и антигенные калейдоскопы. При этом у каждого животного свой узор антигенного калейдоскопа.

    Индивидуальность — превыше всего

    Как же распределены человеческие антигены среди людей? Не будем называть распределение случайным. За кажущейся беспорядочностью, случайностью, несомненно, кроется биологическая закономерность развития. Подчеркну лишь, что двух антигенно тождественных людей нет. И это не удивительно — или, во всяком случае, не должно удивлять. Равно как не удивляет нас отсутствие интеллектуально или физически тождественных людей. Человек, например, имеет свой неповторимый рисунок узоров кожи на пальцах. Это мы уже знаем из детективной литературы, фильмов. Из дискуссий в газетах о пользе, необходимости и оскорбительности снятия отпечатков пальцев. Точно так же придется понять и привыкнуть: не существует и иммунологического тождества. Все люди обязательно отличаются друг от друга по антигенам. Достаточно одной неповторяющейся комбинации двух каких-нибудь антигенов, и структура белковая, рисунок антигенный будет уже иным. Среди людей, впрочем, среди всего живого, нет иммунологической одинаковости. И чем вид организма сложнее, тем больше будут разниться его индивидуумы. Стало быть, безусловна чужеродность иммунная (а уж вам почти ясно — тканевая, но об этом дальше) между видами. И конечно же, она есть и внутри вида между отдельными представителями. Значит, человек человеку — антигенно чужероден. Занимать ткани у одного для другого — задача весьма трудная. Опять уместно вспомнить Карреля. Пересадка тканей или органов с одного места на другое в пределах того же животного — успех. Попытка пересадить ткань или орган от другого индивидуума того же вида, например от одной собаки другой, даже если это собаки одной и той же породы, всегда сопровождалась отторжением пересаженного кусочка ткани или органа.

    Участок организма, будь то кожа или орган, перенесенный или, правильнее, пересаженный в другое место этого же тела, или на другого представителя этого вида, или даже, более того, на индивидуум совсем другого вида животного мира, — все равно эта пересаженная ткань получила красивое имя — трансплантат.

    В биологии и медицине есть очень много красивых слов. Мы уже привыкли и не замечаем их красоты, нам тут же представляется сущность слова. Например, попробуйте вслух произнести отчетливо, артикулируя каждый звук, слово «розеола». По-моему, красиво. Или — «комплимент». Опять красиво. По красоте названий биологи и медики поспевают за физиками. У физиков есть удивительные названия и единицы измерения. Например, единица измерения — «странность». Одна «странность», две «странности» и т. д. Не будем вдаваться в существо термина. Но звучит красиво и даже приятно. Мы тоже к этому идем. Если пересадить какую-нибудь часть тела от одного организма к другому, то теоретически можно получить птицу с головой ящера, ящера с головой льва, льва с хвостом удава, и т.д. В искусстве, в мифологии такие создания носят названия химер. Вспомните химер Собора Парижской богоматери. И в биологии результаты пересадок тоже получили название химер. Чем это уступает «странностям»? Но до химер в жизни не так-то близко. На страницах книги — они впереди.

    А пока вернемся к судьбам маленьких несложных трансплантатов.

    Неоднократно ученые проделывали подобные опыты на себе и на добровольцах. У человека вырезали кусочек кожи и на его место пришивали такой же лоскут кожи другого человека. Все, разумеется, делали с обезболиванием. Пришивали стерильно и прочно. Прочность, однако, не оказалась гарантией надежности — не помогла. Кожный лоскут был чужеродным — включались иммунные механизмы, нарастала иммунологическая реакция нового хозяина пересаженной кожи против ее антигенов. Начиналась иммунологическая война. В организме начинали вырабатываться антитела, клетки—солдаты нашей армии-защитницы — окружали трансплантат. Весь организм реципиента как бы изолировался барьером этих клеток от чуждой ему донорской ткани. (При пересадках организм, которому пересаживают ткань, называется реципиентом, организм, у которого берут трансплантат, — донором. Эти красивые слова мы уже знаем.)

    Иммунологическая реакция против трансплантата необыкновенно сильна. Пришитый лоскут кожи в течение первых-вторых суток как будто бы приживает. Края пересаженного кусочка сливаются с окружающей кожей реципиента. Восстанавливается и начинает работать сосудистая сеть — кровь нового хозяина бежит по сосудам трансплантата, питает его. Но к 5—7-му дню кровообращение нарушается. Ограничивающий слой клеток хозяина увеличивается. Появляются антитела. К 10—16 суткам трансплантат отторгается.

    Повторная пересадка кожи от того же донора просто указывает пальцем на виновника — иммунитет. Повторная пересадка демонстрирует и образование активного иммунитета. После первой пересадки иммунизированный ею реципиент отторгает второй лоскут кожи вдвое быстрее. Но только лоскут от того же донора.

    Иммунитет, как и в случаях с бактериями, строго специфичен. Если мы повторно пересадим лоскут кожи от того же самого донора, иммунитет против него уже есть, и он отторгается вдвое быстрей. Кожа от другого донора отторгается в те же сроки, что и в первый раз, — через 10—16 дней. Это и есть доказательство, во-первых, что главный враг — иммунитет; во-вторых, иммунитет в этих случаях, как и противомикробный, специфичен.

    Иммунитет стоит на страже индивидуальности. В организме могут существовать только собственные ткани со своим индивидуальным набором антигенов, со своим неповторимым узором антигенного калейдоскопа. Это и ставит преграду хирургам, когда необходимо пересадить пострадавшему человеку кожу, костный мозг, почку или любой другой поврежденный или больной орган. Армия иммунитета не позволяет сделать этого, она «не понимает» жизненную важность такой восстанавливающей операции. Для нее непререкаем принцип: «Индивидуальность превыше всего; все чуждое — чуждо!»

    Обреченные на гибель

    Теперь вы понимаете, почему иммунитет, спасающий нас от смерти в борьбе с микробами, является в других случаях нашим врагом.

    Врагом, конечно, относительным. Скажем мягче: иммунитет в некоторых случаях мешает. Иммунитет следит за постоянством внутренней среды, иммунитет бдительно хранит биологическую индивидуальность организма. Не считать же его врагом за то, что иногда он слепо продолжает делать свое дело, когда это нам не нужно. Все же он нам приносит больше пользы.

    Так что иммунитет не враг, но в иных случаях лучше бы его не было.

    Как только в организм попадают клетки или ткани, отличающиеся хотя бы одним антигеном, начинают вырабатываться антитела. Фагоциты вместе с антителами и лимфоцитами набрасываются на чуждую им ткань и обрекают ее на гибель.

    Если хирург попытается пересадить раненому или обожженному кожу другого человека — чужую кожу, она будет отторгнута, как бы искусно он ее ни пришил. Если врач попытается пересадить какой-нибудь внутренний орган или его часть и этой части некуда будет отторгаться, она обязательно рассосется. Фагоциты съедят ее по маленьким кусочкам, медленно, но неумолимо. Даже кость, если она инородна, подвергается рассасыванию, то есть будет съедена микроскопическими клетками-пожирателями.

    Хирургия, достигшая необыкновенного мастерства, остановилась перед своей самой заветной мечтой — не ограничиваться только удалением больного органа, но и научиться заменять его здоровым. Иммунологическая армия воздвигнула перед этой мечтой барьер несовместимости тканей. Мастерство хирургов в наше время достаточно велико, и их не пугают технические трудности пересадки чужих рук, ног, почек, легких и даже сердец.

    Уровень нынешней хирургии позволяет пересадить человеку любой орган в любом месте. Для хирургов сейчас нет недоступных мест. Все дело в том, что результаты пришивания совсем не зависят от уровня хирургии и классности хирурга.

    Беда в том, что ничто чужое не может прижить из-за антигенных различий. Иммунологическая армия не изменяет своему принципу: не дает возможности прижить чужому органу, так же как и чужой коже.

    Все чужое — чуждо!

    Отторжение происходит всегда, если только пересаженный орган не взят от близнеца, причем не от всякого близнеца, а от однояйцевого.

    Однояйцевыми близнецами называются такие, которые развиваются из одной яйцеклетки. Такие близнецы во всем похожи друг на друга как две капли воды. Есть ведь близнецы, которые мало похожи друг на друга. Есть близнецы и разных полов. Это братья или сестры из разных яйцеклеток. Это близнецы разнояйцевые. Сходство же однояйцевых близнецов бывает столь велико, что даже родители не всегда различают своих детей-двойняшек. Точно так же и иммунологическая армия каждого из близнецов «путается», но не в самих близнецах, а в антигенном составе их тканей, который тоже идентичен как две капли воды. Армия иммунитета каждого из близнецов принимает ткани другого за свои, она не вырабатывает против них антител и не пытается отторгать.


    Близнецы


    Впрочем, это не совсем так. У них просто одна ткань. Хоть люди и получаются разные, но ткань у них одна.

    Одна оплодотворенная клетка. Клетка начинает развиваться, то есть делиться. Сначала на две клетки. Потом на 4, 8 и так далее в геометрической прогрессии. В какой-то момент в самом начале — допустим, на уровне 32 клеток — весь этот конгломерат поделился, и две половины, по 16 клеток, продолжали свое развитие самостоятельно.

    Дальше — дифференциация тканей. А затем образование органов. Получилось два плода. Затем — два ребенка.

    А ткань у них одна. Из одной клетки. Из одних и тех же хромосом. Одни и те же гены. Одни и те же антигены.

    Поэтому естественно, что пересадка от одного однояйцевого близнеца к другому должна быть успешна. Иммунитет не будет считать трансплантат чужим.

    Иммунитет будет молчать.

    В настоящее время известны уже десятки случаев успешной пересадки от одного близнеца к другому кожи, почек, костного мозга. Органы приживают и нормально работают, а родство братьев и их братская любовь не становятся меньше оттого, что один поделился с другим.

    К сожалению, далеко не все люди имеют братьев или сестер-близнецов. И не все близнецы однояйцевые. А это значит, что успех пересадок от человека к человеку — исключение из общего правила: «Пересаженные органы обречены на гибель».

    «Как же так? — возразит читатель. — Известно, что хирурги пересаживают кожу, кости и даже сосуды от одного человека другому. Например, при обширных ожогах берут кожу у добровольцев и пересаживают пострадавшему. Об этом даже в газетах пишут».

    Чтоб не вступить в противоречие с газетами, журналами, славящими незаметных героев, давших кожу обожженному, должен оговориться. Не думайте, что эту кожу берут зря. Ее пересаживают, и в первые дни она служит обожженному верой и правдой. Успевает помочь. Она, во-первых, прикрывает рану. Затем она отторгается. Но она была каркасом для новой, своей кожи. На ее месте остается островок из новой создающейся кожи. От этого островка в стороны будет расти молодая ткань. Временно посаженная кожа создает островки эпителизации. Поэтому польза от этих пересадок большая.

    Так что не зря ищут добровольцев поделиться своей кожей в пользу обожженного. Пересаженные кости, сосуды хоть и подвергнутся рассасыванию, но послужат каркасом для новой, молодой собственной костной или сосудистой ткани.

    В настоящее время такие пересадки широко используются в хирургии. Лоскуты кожи, сосуды, кости собираются специальными учреждениями, консервируются и в случае необходимости доставляются в хирургические отделения. Учреждения эти называются тканевыми банками: банк кожи, сосудов, глаз, костей. Первый тканевый банк был открыт в США в 1950 году.

    Теперь, дав некоторое время отдохнуть от терминологии отвлеченными рассуждениями, я должен огорчить читателя и устроить целый фейерверк из терминов. В утешение скажу: все термины похожие. И основа их всех встречалась на прочитанных уже страницах. Итак, просто, сухо, холодно: пересадка тканей или органов в пределах одного и того же организма с одного места на другое называется аутотрансплантацией. Пересадка от одного индивидуума другому в пределах того же вида, например от животного человеку, называется гетеротрансплантацией. Соответственно пересаживаемая ткань имеет название аутотрансплантат, гомотрансплантат или гетеротрансплантат. Истинное приживление происходит только при аутотрансплантациях да еще в тех случаях, когда донором служит идентичный во всех отношениях близнец.

    Чистые линии

    Не трудно представить, как важны для изучения проблемы пересадки тканей идентичные во всех отношениях животные. Животные-близнецы, идентичные и в антигенном отношении. Не только потому, что между ними, как между однояйцевыми близнецами у людей, успешно проходят пересадки кроветворных клеток, кожи, почек и других органов и тканей. Но и…

    Представьте себе, что мы животному №1 пересадили клетки селезенки животного №2. Для этого у животного №2 пришлось взять селезенку. Теперь нам нужно выяснить, повлияла ли и как, через какое время, если повлияла, пересадка этих клеток на возможность приживаемости почки донора, то есть животного №2. Для этого донорскую почку надо будет пересаживать через месяц, два, год. А донора уже в живых нет. Да если бы и жил, у него все равно только две почки. У любого другого животного (№3, 4, 5 и т. д.) «индивидуальность превыше всего», и копию нашему донору найти невозможно, если у него нет однояйцевого близнеца. А ведь для некоторых работ нужны сотни таких копий!

    В идеальном случае экспериментатор во время каждого опыта должен точно знать, что животные данной группы идентичны между собой. Но они отличаются по антигенному строению тканей от животных другой группы, которые между собой тоже идентичны.

    Для точных экспериментов и правильных научных выводов — это понятно всем — нужны именно идеальные условия.

    И они на самом деле имеются!

    Созданы животные чистых линий, то есть таких пород, внутри которых все особи антигенно тождественны, как однояйцевые братья или сестры-близнецы.

    Теперь нам надо понять принцип создания чистых линий животных, их биологическое существо. Для этого придется получить еще порцию знаний. Нам сейчас надо хоть немного, хоть совсем поверхностно познакомиться с генетикой — наукой о наследственности.

    Все основные внешние и внутренние признаки организма определяются особыми структурными единицами — генами. Гены располагаются в ядерных нитях — хромосомах. В человеческих хромосомах, например, содержится не менее 40 тысяч генов. Хромосомы в строго определенном парном числе находятся в ядрах всех клеток. В человеческих клетках 23 пары хромосом, в норме всегда 23, в крысиных — 21, всегда 21, у мышей 20 пар. Хромосомы каждой пары одинаковы, а разных пар различны.

    Когда говорят: парные хромосомы одинаковы, имеют в виду их одинаковую форму и расположение в них генов, определяющих одни и те же признаки. Если в одной из парных хромосом расположены гены группы крови, цвета глаз, формы ушной раковины, то и во второй на тех же местах помещаются эти гены. Но сами гены неравнозначны.

    Ген группы крови, например, существует в трех вариантах (аллелях) — А, В и 0. И если в одной хромосоме находится вариант А, а в другой 0, то группа крови человека будет А0; если В и 0, то В0; если А и В, то АВ; а если 0 и 0, то нулевая группа. Это совершенно ясно и просто и никаких дополнительных объяснений не требует.

    Следовательно, парные хромосомы одинаковы по форме и расположению генов. По существу же, по качествам тех признаков, которые определяются этими генами, могут быть и чаще всего бывают различны.

    Парность хромосом возникает в самом начале развития организма, при возникновении его во время слияния мужской и женской половых клеток. Один набор хромосом приходит от матери и один от отца. При этом каждая хромосома находит свою и только свою пару.

    Оплодотворенная яйцеклетка с полным парным набором хромосом начинает делиться на 2, 4, 8 и т.д. клеток. Перед делением всякий раз каждая хромосома образует возле себя совершенно подобную себе хромосому — удваивается. Перед делением клетки вновь образовавшиеся дочерние хромосомы отделяются от старых. Каждая дочерняя клетка получает по одной из них. Обе новые клетки, таким образом, получают по два набора хромосом. Вследствие этого каждая клетка развившегося человека содержит 23 пары хромосом, каждая клетка мыши — 20 пар, крысы — 21 пару. Один из парных наборов пришел от отца и принес отцовские гены и отцовские качества, другой — от матери.

    Когда у взрослого организма начинают образовываться половые клетки, происходит особого рода деление — без удваивания каждой хромосомы. Клетки — предшественники половых клеток содержат, как и все остальные, по два набора хромосом. В каждой паре одна хромосома от отца, другая от матери. В образующуюся половую клетку из каждой пары попадает только одна — или материнская, или отцовская. Какая пойдет в одну сторону, какая в другую, неизвестно. Это определяется случайностью. По крайней мере сегодня мы это считаем случайностью. Важно, что новообразованные половые клетки не получают все свои хромосомы только от одного из исходных наборов. Возникает новый набор, состоящий из смеси отцовских и материнских. Вот это соединение одинаковых пар хромосом при слиянии половых клеток и последующее (при образовании новых половых клеток) расхождение пар с возникновением перегруппировки, а следовательно, с возникновением нового хромосомного набора было названо «танцем хромосом».

    Каждая хромосома несет большое количество генов. Каждый ген определяет тот или иной признак организма. Из всего сказанного ясно, что перегруппировка хромосом в новые наборы обеспечит у потомков новые комбинации признаков. Поэтому-то дети одних и тех же родителей отличаются друг от друга. Каждый из них имеет особым образом составленный в результате «танца» набор хромосом.

    Давайте проследим за переходом из поколения в поколение только одной пары хромосом. Эта пара несет гены, определяющие какую-то группу признаков. Ну, например, интересующую нас антигенную дифференцировку, являющуюся причиной несовместимости тканей. Сейчас мы создадим семью и будем комбинировать детей, внуков.

    ...У отца имеется пара хромосом А и А1. У матери — а и а1. Их половые клетки будут содержать по одной хромосоме из этих двух: А или А1 и а или а1. Создаем детей. Дети имеют возможность получить следующие пары, как повезет: Аа, Аа1, А1а или А1а1. Теперь другие родители. Они еще не знают, что мы назначим им породниться. Отец Б и Б1. Мать — б и б1. Их дети имеют следующие возможности: Бб, Бб1, Б1б или Б1б1.

    Породним эти семьи. Дети А1а1 и Бб поженились и сами стали родителями. Создаем внуков. Внуки возможны в следующих вариантах: А1Б, А1б, а1Б или а1б. Если теперь внуки вступят в брак с особями В и В1 или, скажем, с особями Г и Г1, получатся еще новые сочетания.

    Хромосом много, и в каждой из них огромное число вариантов генов. Бесконечно много совершенно своеобразных хромосомных наборов, как говорят генетики, совершенно своеобразных генотипов. Число возможных комбинаций значительно превышает цифру в 3 миллиарда, то есть современное население Земли. Иначе говоря, совершенно своеобразных генотипов больше, чем живет на нашей планете людей. Отсюда и уникальность, неповторимость.

    Поэтому нет идентичных людей, за исключением однояйцевых близнецов. Поэтому бесконечное число антигенных индивидуальностей. Поэтому ткани любого человека по антигенному строению отличаются от тканей любого другого и не приживают при пересадках.

    Но мы же говорили с вами, что, несмотря на случайности, есть определенные закономерности. Надо только их вытащить из груды хаоса. Надо их только чуть-чуть направить.

    И генетики нашли способ экспериментально создавать животных с практически идентичными парами хромосомных наборов. По крайней мере идентичными по интересующим нас факторам, определяющим антигенное строение. Каждая пара хромосом у таких животных состоит из двух тождественных по генному составу. Тождественных не только по форме и расположению генов, но и по каждому гену — в обеих хромосомах одни и те же аллели (это красивое слово нам знакомо, но здесь оно имеет совсем другой смысл) генов. Поэтому никакой «танец» во время образования половых клеток не меняет сути дела — хромосомы могут меняться местами, но они одинаковы. Такие животные называются гомозиготными, или чистолинейными.

    Для их создания пользуются длительным внутрисемейным скрещиванием. Самцов и самок одного помета скрещивают между собой. Из полученного помета снова берут родных брата и сестру и скрещивают. И так поступают в течение ряда поколений.

    Это браки по расчету. Расчет на появление все большего числа гомозиготных особей. Наконец все рождающиеся животные становятся чистолинейными.

    Если представить себе животных, в клетках которых всего одна пара хромосом, то при самом благоприятном подборе пар для скрещивания чистая линия могла бы быть получена уже через четыре поколения. Практически это будет протекать дольше, так как пары для скрещивания очень редко подбираются совершенно успешно. Да и хромосом в клетках большинства организмов не по две, а больше. В практике выведения чистых линий животных проводится гораздо больше братско-сестринских скрещиваний. Например, у мышей чистой линией считаются лишь потомки 20-го поколения внутрисемейных скрещиваний. Исследователь, выводящий мышей, после 20-го поколения может дать сообщения в печать о выведении новой чистой линии. Некоторые для большей верности считают рубежом 40-е поколение.

    В настоящее время имеется несколько десятков различных чистых линий мышей, крыс и других животных. Вот названия некоторых линейных мышей, наиболее употребляемых при иммунологических исследованиях (в скобках дана окраска шерстного покрова):

    А (белые),

    СЗН (серые),

    С57ВL (черные),

    С57ВR (коричневые).

    На чистолинейных животных изучаются основные вопросы трансплантации тканей. Успешнее всего исследуются закономерности иммунологической толерантности, то есть иммунологической близости, иммунологического сродства, приводящего к созданию животных-сфинксов.

    Обо всем этом речь пойдет в следующих главах, где еще не раз придется вспомнить о мышах чистых линий.









     


    Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх