• Элемент жизни
  • Отдел снабжения
  • Водолазные скафандры и акваланги
  • В поисках кислорода
  • Шлак и балласт
  • Вентиляция

    Элемент жизни

    Для создания новых молекул, а в конечном итоге для построения новых клеток нужна энергия. Не меньше ее расходуется и на работу отдельных органов и тканей. Все энергетические затраты организма покрываются за счет окисления белков, жиров и углеводов, попросту говоря – сгорания этих веществ.

    Для окисления необходим кислород. Доставкой его и заняты органы дыхания. У человека эту функцию выполняют легкие. Однако не следует называть дыханием ритмические движения грудной клетки, в результате которых воздух то засасывается в легкие, то выдавливается наружу. Это еще не само дыхание, а всего лишь транспортировка необходимого для него кислорода.

    Сущностью дыхания являются окислительные процессы, которые лишь отдаленно напоминают горение и ни в коей мере не могут быть с ним отождествлены. При обычном горении кислород непосредственно присоединяется к окисляемому веществу. При биологическом окислении белков, жиров или углеводов у них отнимается водород, который, в свою очередь, восстанавливает кислород, образуя воду. Запомните эту схему тканевого дыхания, нам еще придется к ней вернуться.

    Окисление – важнейший способ получения энергии. Вот почему астрономы, изучая планеты солнечной системы, в первую очередь стараются узнать, есть ли на них кислород и вода. Там, где они имеются, можно ожидать существование жизни. Недаром радостная весть о первой в мире мягкой посадке советской межпланетной станции «Венера-4» на планету Венера была омрачена сообщением, что в ее атмосфере практически нет свободного кислорода, очень мало воды и температура достигает 300 градусов.

    Однако унывать не стоит. Даже если на Венере и нет совершенно никаких следов жизни, для этой планеты еще не все потеряно. Можно поселить в верхних слоях ее атмосферы, где не так жарко, примитивные одноклеточные растения, которые потребляли бы углекислый газ и продуцировали кислород. Очень высокая плотность венерианской атмосферы позволит крохотным одноклеточным существам плавать в ней, не падая на поверхность планеты. С помощью таких организмов в конечном итоге удалось бы коренным образом изменить газовый состав атмосферы Венеры.

    Эта задача для зеленых растений вполне по силам. Ведь и наша земная атмосфера в том виде, какой мы ее знаем, создана живыми организмами. Сейчас растения Земли ежегодно потребляют 650 миллиардов тонн углекислого газа, при этом они продуцируют 350 миллиардов тонн кислорода. Когда-то и в земной атмосфере кислорода было значительно меньше, чем теперь, а углекислого газа гораздо больше. Нужно только запастись терпением. Нескольких сотен миллионов лет будет, вероятно, вполне достаточно, чтобы в корне преобразовать атмосферу Венеры. Есть основания предполагать, что к тому времени и температура на этой планете значительно снизится (ведь и на Земле было когда-то горячо). Тогда земляне смогут чувствовать себя там совсем как дома!

    Отдел снабжения

    Чтобы жить, необходимо где-то достать кислород, а затем снабдить им каждую клеточку организма. Большинство животных нашей планеты черпают кислород из атмосферы или извлекают кислород, растворенный в воде. Для этого используются легкие или жабры, а затем уже кровь доставляет его во все уголки организма.

    Может на первый взгляд показаться, что извлечение кислорода из воды или воздуха – наиболее сложная часть задачи. Ничуть не бывало. Животным не пришлось придумывать никаких специальных приспособлений. Кислород проникает в протекающую по легким или жабрам кровь лишь благодаря диффузии, то есть потому, что в крови его меньше, чем в окружающей среде, а газообразные и жидкие вещества стараются распределиться так, чтобы их содержание всюду было одинаковым.

    Природа не сразу додумалась до легких и жабр. Первые многоклеточные живые организмы их не имели, они дышали всей поверхностью тела. Все последующие более развитые животные, в том числе и человек, хотя и приобрели специальные органы дыхания, но способность дышать кожей не утратили. Лишь звери, одетые в броню: черепахи, броненосцы, крабы и им подобные – не пользуются этой привилегией.

    У человека в дыхании принимает участие вся поверхность тела, от самого толстого эпидермиса пяток до покрытой волосами кожи головы. Особенно усиленно дышит кожа на груди, спине и животе. Интересно, что по интенсивности дыхания эти участки кожи значительно превосходят легкие. Так, например, с одинаковой по размеру дыхательной поверхности кислорода здесь может поглощаться на 28, а выделяться углекислого газа даже на 54 процента больше, чем в легких.

    Чем обусловлено такое превосходство кожи над легкими, неизвестно. Возможно, тем, что кожа дышит чистым воздухом, а свои легкие мы проветриваем плохо. Даже при самом глубоком выдохе в легких остается известный запас воздуха далеко не лучшего состава, в котором значительно меньше кислорода, чем бывает в наружной атмосфере, и очень много углекислого газа. Когда мы делаем очередной вдох, вновь поступающий воздух смешивается с уже находящимся в легких, и это сильно снижает качество последнего. Не мудрено, если в этом и кроется преимущество кожного дыхания.

    Однако доля участия кожи в общем дыхательном балансе человека по сравнению с легкими ничтожна. Ведь общая ее поверхность у человека едва достигает 2 квадратных метров, тогда как поверхность легких, если развернуть все 700 миллионов альвеол, микроскопических пузырьков, через стенки которых и происходит газообмен между воздухом и кровью, составляет по меньшей мере 90–100, то есть в 45–50 раз больше.

    Дыхание через наружные покровы тела может обеспечить кислородом только очень небольших животных. Поэтому еще на заре возникновения животного царства природа примеривала, что бы для этого использовать. Прежде всего выбор пал на органы пищеварения.

    Кишечнополостные животные состоят всего из двух слоев клеток. Наружный извлекает кислород из окружающей среды, внутренний из воды, свободно поступающей в кишечную полость. Уже плоские черви, обладатели более сложных пищеварительных органов, пользоваться ими для дыхания не могли. И вынуждены были оставаться плоскими, так как в большом объеме диффузия не способна обеспечить кислородом глубоко лежащие ткани.

    Многие из кольчатых червей, появившихся на Земле вслед за плоскими, тоже обходятся кожным дыханием, но это оказалось возможным только потому, что у них уже появились органы кровообращения, которые разносят кислород по всему телу. Впрочем, некоторые кольчецы обзавелись первым специальным органом для извлечения кислорода из окружающей воды – жабрами.

    У всех последующих животных аналогичные органы строились в основном по двум схемам. Если кислород нужно было получать из воды, то это были специальные выросты или выпячивания, свободно омываемые водой. Если кислород извлекался из воздуха, это были вдавления, от простого мешка, каким является дыхательный орган виноградной улитки или легкие тритонов и саламандр, до сложно устроенных, похожих на виноградные гроздья блоков микроскопических пузырьков, какими стали легкие млекопитающих.

    Условия дыхания в воде и на суше сильно разнятся друг от друга. При самых благоприятных условиях в литре воды содержится всего 10 кубических сантиметров кислорода, тогда как в литре воздуха его 210, то есть в 20 раз больше. Поэтому может вызвать удивление, что дыхательные органы водных животных не могут извлекать из столь богатой среды, какой является воздух, достаточного количества кислорода. Устройство жабр таково, что они могли бы успешно справляться со своей задачей и на воздухе, если бы их тоненькие пластинки, лишенные опоры, которую дает вода, не слипались бы между собой и, лишенные защиты, не подсыхали. А это вызывает прекращение циркуляции крови и тем самым приостановку дыхательной функции.

    Интересно происхождение дыхательных органов. Природа для их создания использовала то, что было опробовано еще у очень низкоорганизованных существ: кожные покровы и органы пищеварения. Жабры морских червей всего лишь сильно усложненные выросты наружных покровов. У всех позвоночных животных жабры и легкие по своему происхождению являются производными передней кишки.

    Очень своеобразна дыхательная система насекомых. Они решили, что не стоит сильно осложнять вопрос. Проще всего дать возможность воздуху непосредственно добираться до каждого из органов, где бы они ни располагались. Осуществляется это очень просто. Все тело насекомых пронизано системой сложноветвящихся трубочек. Даже мозг и тот изрешечен воздухоносными трахеями, так что у них в буквальном смысле слова в голове гуляет ветер.

    Трахеи, ветвясь, все уменьшаются в диаметре, пока не станут совсем тоненькими, благодаря чему они могут подойти буквально к каждой клеточке тела, и здесь нередко распадаются на пучок уж совсем мельчайших трахеол, диаметром менее одного микрона, которые входят прямо в протоплазму клеток, так что кислород у насекомых доставляется прямо к месту назначения. Особенно много трахеол в клетках, которые усиленно потребляют кислород: в крупных клетках летательных мышц они создают целые сплетения.

    Воздухоносные пути насекомых могут сами разыскивать места, где кислорода становится мало. Так ведут себя трахеолы эпидермиса, крохотные, диаметром меньше одного микрона и длиной не больше трети миллиметра, слепо заканчивающиеся трубочки. Когда вблизи них появляются участки тканей, интенсивно потребляющие кислород, окружающие трахеолы начинают тянуться, увеличиваясь в длину нередко на целый миллиметр.

    На первый взгляд кажется, что насекомые удачно решили проблему снабжения кислородом, только практика этого не подтверждает. Сильный сквознячок в их теле способен быстро высушить насекомое. Чтобы этого не произошло, отверстия трахей открываются лишь на очень короткий срок, а у многих водных насекомых они вообще запечатаны. В этом случае кислород путем диффузии через покровы тела или жабры просачивается в воздухоносные пути и распространяется дальше по ним тоже путем диффузии.

    Крупные сухопутные насекомые дышат активно. 70–80 раз в минуту мышцы брюшка сокращаются, оно уплощается, и воздух выдавливается наружу. Затем мышцы расслабляются, брюшко принимает прежнюю форму, а воздух засасывается внутрь. Интересно, что для вдоха и выдоха чаще всего используются разные дыхательные отверстия, вдох осуществляется через грудные, выдох через брюшные.

    Нередко главные дыхательные органы не в состоянии выполнить свою задачу. Это наблюдается у животных, которые переселились в крайне бедную кислородом или вовсе несвойственную для них среду. И тут уж чего-чего не привлекает природа в помощь основным дыхательным органам.

    В первую очередь широко используются и модернизируются уже испытанные средства. На юге нашей Родины широко известна небольшая рыбешка – вьюн. Встречается она нередко в пересыхающих на лето ручьях, в старицах, полностью утративших связь с рекой. В таких водоемах дно обычно илистое, масса гниющих растений, и поэтому в жаркое летнее время в воде очень мало кислорода. Чтобы не задохнуться, вьюнам приходится «питаться» воздухом. Попросту говоря, они его едят, заглатывают и, как пищу, пропускают через кишечник. Пищеварение идет в передней части кишечника, дыхание в задней.

    Чтобы пищеварение меньше мешало дыханию, в средней части кишечника находятся особые секреторные клетки, которые обволакивают слизью приходящие сюда пищевые остатки, благодаря чему они очень быстро проскакивают через дыхательную часть кишки. Точно так же дышат две другие наши пресноводные рыбы, голец и шиповка. Вряд ли выполнение одним органом двойной функции (дыхания и пищеварения) удобно. Видимо, поэтому у большого отряда пресноводных рыб из тропической Азии появился дополнительный дыхательный аппарат – лабиринт – система очень сложно переплетающихся каналов и полостей, расположенных в расширенной части первой жаберной дуги.

    Ученые не сразу поняли значение лабиринта. Знаменитый Кювье, который, препарируя анабасов, впервые обнаружил и окрестил этот загадочный орган, предположил, что в лабиринте рыбы держат воду, когда вылезают из водоема. Анабас любит попутешествовать, легко переползая из одного водоема в другой.

    Не помогли разъяснить функцию и наблюдения за рыбами в природе. Английский зоолог Коммерсон, первым из европейцев встретившийся с довольно крупной рыбой – гурами, которую местное население издавна разводило в прудах, назвал ее Osphromenus olfacs, что в переподе с латыни означает Нюхатель обоняющий. Наблюдая за рыбами, англичанин видел, что они беспрерывно поднимались к поверхности и, высунув наружу рыло, втягивали воздух. В те времена никому и в голову не могло прийти, что рыбы дышат воздухом! Вот Коммерсон и решил, что гурами всплывают наверх, чтобы выяснить, чем пахнет на белом свете.

    Много позже, когда они попали к аквариумистам Европы, стало понятно, что лабиринтовые рыбы дышат воздухом. Жабры у них недоразвиты, и лабиринт играет видную роль в обеспечении кислородом. Обходиться без воздуха они не могут. Если их посадить в аквариум с самой чистой, богатой кислородом водой, но лишить возможности всплывать к поверхности и набирать воздух, лабиринтовые рыбки попросту «захлебнутся» и «утонут».

    Нелегко дышится и лягушкам, легкие у них далеко не первого сорта, вот и приходится им порой изощряться. В 1900 году в Габоне (Африка) была поймана волосатая лягушка. Это известие всколыхнуло весь научный мир. В ученых кругах считалось точно установленным, что волосяной покров – прерогатива млекопитающих. Лягушки же, как известно, «ходят» голые. Было непонятно, почему у габонских модниц бока и лапы покрыты шерстью. Трудно было предположить, что им холодно. Ведь если даже наши северные лягушки, живущие чуть ли не у Полярного круга, не мерзнут, то почему стало холодно их африканским сестрам?

    Секрет лягушачьих манто существовал недолго. Стоило взглянуть на странную шерсть в микроскоп, как стало ясно, что это простые выросты кожи. Такая «шерсть» греть, конечно, не может, да в Габоне и не бывает холодов. Последующие исследования показали, что волосы выполняют у лягушек функцию своеобразных жабр, с помощью которых они дышат и в воде и на суше. Шерсть растет только у самцов. В период размножения на их плечи ложится немалая физическая нагрузка, и, не будь у них «волос», одышка и недостаток кислорода помешали бы ее выполнить.

    Еще интереснее дыхание илистого прыгуна. Живет эта рыба в тропической Индии и не столько в воде, сколько в грязи. Рыбки скорее сухопутные существа. Они могут совершать по суше большие путешествия и даже отлично лазают по деревьям. На берегу эти рыбы дышат хвостом, кожа которого имеет сильно разветвленную кровеносную сеть.

    В процессе изучения дыхания илистых прыгунов произошла забавная ошибка. Попросту говоря, прыгуны оказались злостными обманщиками. Ученые подметили, что хотя большую часть дня рыбки проводят на суше, где в основном и добывают себе пищу, ловко хватая пролетающих мимо насекомых, но полностью расставаться с водой не любят. Чаще всего они сидят по краям лужи, опустив в воду хвосты. Прыгнув за пролетавшей мимо бабочкой, рыбка пятится назад, пока не опустит хвост в воду.

    Наблюдая такие сценки, ученые решили, что с помощью хвоста прыгун извлекает из воды кислород. Однако, когда догадались замерить количество кислорода, содержащегося в воде, увидели: его там так мало, что не имеет смысла и хвост мочить. Как теперь выяснилось, с помощью хвоста прыгун сосет воду, которая ему очень нужна, чтобы увлажнять остальные части тела, выделять достаточное количество слизи. В это время через хвост он кислорода почти не получает. Зато, когда, запасшись достаточным количеством воды, он покидает водоем, хвост становится главным дыхательным аппаратом.

    Умбра, или, как ее у нас называют, рыба-евдошка, дышит плавательным пузырем. Живет она в Молдавии в низовьях Днестра и Дуная. Плавательный пузырь у евдошки связан с глоткой широким протоком. Высунувшись из воды, рыба наполняет воздухом пузырь. Он густо оплетен кровеносными сосудами, и кислород легко проникает здесь в кровь. Отработанный воздух, насыщенный углекислым газом, умбра время от времени выплевывает. Дыхание через плавательный пузырь для умбры не забава. Если ее лишить возможности заглатывать воздух, она проживет не больше суток.

    Не только для умбры, но и для многих рыб воздух совершенно необходим, правда, по другой причине. Мальки большинства рыб, вылупившись из икринки, обязательно должны сделать хоть один вдох. Вот почему рыбы чаще всего мечут икру в неглубоких местах. Иначе у слабеньких малышей не хватит силенок, чтобы всплыть на поверхность. Воздух малькам нужен для того, чтобы наполнить им плавательный пузырь. Через несколько дней проток, соединяющий пузырь с пищеводом, зарастет, и рыбешки, лишенные возможности произвольно уменьшать свой удельный вес, погибнут от переутомления.

    У открытопузырных рыб проток плавательного пузыря не зарастает. Эти рыбы до глубокой старости сохраняют способность заглатывать новые порции воздуха, когда собираются плавать у поверхности, и выдавливать излишек, если им хочется спуститься на глубину. Но, видимо, подниматься к поверхности не всегда безопасно, и поэтому рыбы чаще пользуются другим способом, чтобы поддерживать количество газов в пузыре на нужном уровне. Этот способ – активная секреция газов с помощью газовой железы.

    Еще на заре изучения дыхания возникло предположение, что кислород, поступивший в легкие, захватывается стенкой альвеол, которая затем секретирует его в кровь. Теория эта впоследствии не оправдалась. Дело не в том, что подобные явления невозможны, просто в легких они оказались ненужными. Для плавательного пузыря закрытопузырных рыб этот способ оказался единственно возможным. Основным рабочим органом железы является чудесная сеть, состоящая из трех последовательно соединенных капиллярных сплетений. Подсчитали, что объем крови, который может поместиться в чудесной сети, невелик, около одной капли, зато площадь сети огромна, ведь она состоит из 88 тысяч венозных и 116 тысяч артериальных капилляров, общая длина которых равняется без малого километру. Кроме того, железа имеет множество канальцев. Считается, что секрет, который она выделяет в просвет пузыря, распадается там, выделяя кислород и азот.

    Благодаря тому, что газ в плавательном пузыре создается железой, а не берется из атмосферы, его состав сильно отличается от наружного воздуха. Чаще всего там преобладает кислород, иногда его бывает до 90 процентов.

    Водолазные скафандры и акваланги

    Более чем две трети нашей планеты покрыто морями и океанами, и только одну треть составляет суша. Необозримые водные просторы давно привлекали внимание людей, и нет ничего удивительного, что еще в древности люди предпринимали попытки проникнуть в их толщу, но лишь в начале XIX века удалось создать водолазный костюм, позволивший подолгу находиться под водой и дышать за счет нагнетаемого с поверхности по специальному шлангу воздуха. Позже был изобретен кессон, представляющий собой колокол, обращенный отверстием вниз. Колокол опускается на дно, и под него накачивается воздух. Находящиеся в колоколе люди могут вести необходимые подводные работы.

    Даже у водолаза, не говоря о кессонных рабочих, радиус действия под водой очень небольшой, ограниченный длиной шланга, по которому поступает воздух. Естественно, что поиски ученых продолжались. Совсем недавно, уже в нашем веке, удалось создать акваланг – автономный водолазный аппарат с баллонами сжатого воздуха или кислорода для свободного передвижения под водой на значительные расстояния.

    Примерно с такой же проблемой столкнулись животные, когда им пришлось переселиться в жидкую среду. Некоторые из них шли тем же путем, что и люди, и на десятки миллионов лет предвосхитили создание водолазных приспособлений.

    В отличие от людей животным пришлось нырять не только в воду, но и во всякие другие жидкие среды, где кислород мог совершенно отсутствовать, поэтому нередко единственным выходом было брать воздух извне. Примерно в таком же положении оказались паразиты, живущие в теле животных и растений.

    Крохотная личинка одного из паразитических насекомых живет в теле крупной африканской саранчи. Проникает этот маленький хищник внутрь своей жертвы через одну из трахеальных трубочек дыхательного аппарата насекомого. Первое время личинка питается стенками своего помещения и быстро растет. Скоро ей становится тесно, и она, проделав в стенке трахеи отверстие, как бы ныряет в ткани хозяина. Но там нечем дышать, а личинке нужен воздух. И тогда она поступает, как ныряльщики на всех морях земного шара: заводит себе дыхательную трубку. Проделав в твердой хитиновой оболочке жертвы отверстие, она прикладывает к нему задний конец брюшка, из которого вскоре вырастает дыхательная трубка. Так, получая воздух через трубку, как водолаз через шланг скафандра, и живет личинка в теле саранчи. Дыхательная трубка понемногу растет, что позволяет личинке проникать все глубже и глубже. Трубка может стать раза в два длиннее самой личинки.

    Легко растяжимый и очень длинный сифон, как настоящий водолазный шланг, имеют личинки еристалис. Живут они на дне водоемов, зарывшись в ил. Если водоем в этом месте очень мелок, личинки имеют возможность, не вылезая из ила, выставлять на поверхность воды свой шланг и преспокойно дышать.

    Предки водяных насекомых были наземными животными. Переселение в воду иногда не влекло за собой никаких существенных изменений в их дыхательной системе. Дышат они только воздухом. Единственное приспособление к водной среде выразилось в способности делать запасы воздуха, как поступают аквалангисты, отправляясь в подводное странствие. У жуков-плавунцов эти запасы помещаются под надкрыльями, а у гладышей на брюшке. Пузырьки воздуха удерживаются с помощью особых не смачиваемых водой волосков. Отверстия дыхательной системы находятся в местах прикрепления воздушных пузырьков; из этих резервуаров и черпают насекомые необходимый для жизни кислород.

    То же самое относится и к паукам. Подавляющее большинство из них – характерные наземные животные, дышащие при помощи особых легочных мешков. Тем замечательнее единственный в нашей фауне перебежчик в водную стихию из этого отряда животных – водяной паук серебрянка. Тело его покрыто мелким несмачиваемым пушком. Когда паук погружается в воду, к пушку пристают мельчайшие пузырьки воздуха, покрывая все тело сплошной воздушной оболочкой. В воде эта оболочка блестит, и паук становится похож на живой шарик ртути. Кроме того, выставляя из воды кончик брюшка, паук забирает более крупный пузырек воздуха и, придерживая его задними лапками, отправляется в царство Нептуна.

    Среди водных растений паук натягивает нити своей паутины точно так же, как это делают его наземные сородичи. Сначала паутина имеет плоский вид. Но по мере того как паук переносит под нее пузырьки воздуха, она начинает выпячиваться, принимая форму наперстка. Получается миниатюрный кессон. В этом кессоне и проводит большую часть жизни паук. Здесь же самка откладывает яички, из которых выводятся молодые паучата.

    Сходство с аквалангом и кессоном чисто внешнее. Происходящие здесь процессы гораздо сложнее. Пузырьки воздуха, которые несут на себе насекомые, с одной стороны, являются запасными резервуарами, а с другой – помогают извлекать кислород из окружающей воды. Это приспособление даже получило специальное название – физические легкие.

    В воде, как известно, растворены все газы, входящие в состав воздуха, в количестве, пропорциональном их концентрации в атмосфере. По мере того как насекомое дышит, концентрация кислорода в воздушном пузырьке уменьшается, и, когда станет меньше 16 процентов, в воздушный пузырек начинается диффузия кислорода, растворенного в воде. Таким образом, запас кислорода в пузырьке все время пополняется.

    Если расход кислорода небольшой, например когда насекомое находится в состоянии покоя, физическое легкое может обеспечить потребность в кислороде в течение неограниченно долгого времени. Если же расход кислорода велик, диффузия его из воды не может своевременно восполнять потерю, процентное содержание кислорода в воздушном пузырьке резко уменьшается, а процентное содержание остальных газов (и в первую очередь азота) повышается и делается значительно большим, чем это обычно бывает в воздухе. Поэтому азот начинает растворяться в воде. Объем воздушного пузырька уменьшается за счет расхода части кислорода на дыхание и растворения азота в воде, насекомое вынуждено всплывать на поверхность для пополнения своих запасов.

    Количество воздуха, которое насекомое может унести на себе, невелико, и, если бы не происходило пополнения запасов кислорода из воды, его хватало бы очень ненадолго. Это отчетливо проявляется в тех случаях, когда диффузия газов невозможна. Например, если поместить плавунцов и гладышей в кипяченую воду, они вскоре погибнут, так как в кипяченой воде нет никаких растворенных газов и, следовательно, пополнять запасы кислорода неоткуда.

    То же самое произойдет, если посадить этих насекомых в воду, в которой растворен только кислород, и в качестве запаса дать тот же кислород в чистом виде. Запаса хватит не больше чем на полчаса, так как в таких условиях диффузия идти тоже не будет. Обычно же гладыши могут находиться в воде, не пополняя запаса воздуха 6 часов. Так благодаря диффузии кислорода из воды в воздушный пузырек продолжительность пребывания насекомых в воде без возобновления запаса воздуха увеличивается во много раз.

    Мелкие насекомые, расход кислорода у которых невелик, могут очень долго не пополнять запас воздуха. Причем, оказывается, они не так страдают от уменьшения запасов кислорода, как от убыли из воздушного пузырька азота. Если водяного клопа посадить в воду, насыщенную кислородом, предварительно тонкой кисточкой убрав под водой воздушные пузырьки и заменив их пузырьками из чистого азота, то насекомые долгое время будут чувствовать себя нормально, так как в пузырек азота очень скоро из воды выделится достаточное для дыхания количество кислорода.

    Некоторые насекомые не могут сами всплывать на поверхность за возобновлением запасов воздуха. На тюленях паразитирует несколько родственных между собой видов вшей, которые никогда не покидают своего хозяина и поэтому пополнять запасы воздуха могут только тогда, когда тюлень выходит из воды. В связи с этим они в разной степени приспособлены для длительного пребывания в воде. У видов, живущих на теле тюленя, грудь и брюшко покрыто широкими чешуйками, позволяющими удерживать большое количество воздуха. У видов, живущих только на голове тюленя, таких чешуек нет. Но им и не нужен большой запас, так как тюлень сам дышит воздухом и поэтому очень часто высовывает из воды голову.

    Физическими легкими пользуется икра лабиринтовых рыб, для которой родителям приходится сооружать специальную постройку, так называемое гнездо. Оно строится из пузырьков воздуха, заключенных в слюнообразную жидкость. Окруженная лишь тонкой пленкой жидкости, икра, плавая среди воздушных пузырьков, получает достаточное количество кислорода. Убыль кислорода пополняется из воздуха.

    Полиакант, живущий в более богатой кислородом среде, строит свои гнезда не на поверхности, а где-нибудь под широким листом подводного растения, под камнем или корягой. Раз в воде есть кислород, физические легкие будут работать и на глубине. Интересно, что полиакант строит свое гнездо в любое время года, а не только в период размножения и пользуется им сам, дыша воздухом из гнезда. Это позволяет рыбе не подниматься на поверхность, где может подстерегать опасность, а оставаться у дна в густых зарослях растений, в завалах коряг. Полиакант забирает из своих кладовых воздух, богатый кислородом, а взамен для обогащения кислородом и очистки от углекислоты возвращает пузырек азота с примесью углекислого газа. Только когда в гнезде станет мало азота, полиакант поднимается на поверхность, чтобы пополнить свои запасы.

    В поисках кислорода

    Наша планета очень богата кислородом. Видимо, эта доступность объясняет, почему животные не научились запасать его в достаточно больших количествах. Только очень немногие обитатели Земли способны делать существенные запасы кислорода, зато по мелочам запасают довольно часто.

    Кровь находится в капиллярах альвеол всего две секунды, но этого вполне достаточно, чтобы установилось кислородное равновесие между воздухом альвеол и кровью. Однако какое ничтожное количество кислорода может при этом раствориться в крови! Всего-навсего 0,003 кубического сантиметра в кубическом сантиметре плазмы крови. Чтобы обеспечить животное необходимым количеством кислорода, при этом способе снабжения пришлось бы почти в 100 раз увеличить объем легких и количество протекающей по ним крови. Совершенно ясно, что осуществить подобный проект оказалось очень трудно.

    Природа пошла по другому пути, снабдив кровь веществом, которое легко вступает в реакцию с кислородом и, таким образом, удерживает его в гораздо больших количествах, чем он мог бы содержаться в простом растворе. Чтобы ткани тела смогли воспользоваться запасенным кислородом, это вещество должно при необходимости очень легко с ним расставаться. Таким веществом является гемоглобин. Он обладает обоими, совершенно необходимыми для дыхания свойствами. Когда кровь оказывается в легких, где кислорода много, гемоглобин немедленно вступает в контакт с кислородом. Благодаря этому кубический сантиметр крови уносит с собой 0,2 кубического сантиметра кислорода, то есть 20 процентов от объема крови, и затем отдает его тканям тела.

    Более мощные запасы кислорода потребовались отдельным органам, главным образом мышцам. В организме многие мышцы работают ритмично по нескольку часов подряд. Это мышцы ног, крыльев, жевательные, а дыхательные и мышца сердца никогда не прерывают своей работы. Оказалось, что на ходу снабжать их кислородом практически невозможно. Когда мышца сокращается, сосуды в ней пережимаются, и кровь по ним следовать не может.

    В это время мышца дышит за счет запасов кислорода, созданных с помощью особого мышечного гемоглобина. Он очень похож на гемоглобин крови. Единственное существенное отличие в том, что мышечный гемоглобин гораздо легче захватывает кислород и более крепко его держит, отдавая только тогда, когда в окружающей среде кислорода станет совсем уж мало. В сердечной мышце теплокровных содержится 0,5 процента мышечного гемоглобина, что позволяет на каждый грамм мышцы запасать 2 кубических сантиметра кислорода. Вполне достаточное количество, чтобы обеспечить нормальную работу мышцы в момент прекращения кровотока.

    Водные млекопитающие и водоплавающие птицы, которым приходится подолгу находиться под водой, превратили мышцы, в первую очередь самые важные, в еще более мощные склады кислорода, насытив их большим количеством мышечного гемоглобина. Это дает возможность кашалотам на 30–50 минут погружаться в воду и проплывать за это время большие расстояния. Еще дольше – 1,5–2 часа может находиться под водой аллигатор.

    Кислорода в атмосфере нашей планеты очень много, а убыль его постоянно восполняют зеленые растения. Казалось, что человеку никогда не придется столкнуться с его недостатком. С большим огорчением приходится признать, что эти надежды не оправдались.

    Несколько лет назад в Японии столкнулись с необходимостью иметь запасы кислорода даже в условиях обычных повседневных дел. По улицам Токио и других крупнейших городов страны движется нескончаемый поток автомобилей, отравляющий воздух углекислым и угарным газами. Такой воздух, хотя кислорода в нем еще достаточно, для дыхания людей становится непригодным.

    Полицейские, которые по роду службы работают на улице, не в состоянии выстоять целую смену. Чтобы избежать тяжелых отравлений, их приходится снабжать кислородом. Уже давно в полицейских участках и на важнейших постах стоят баллоны со сжатым газом, чтобы постовые могли время от времени отдышаться. А сейчас на улицах Токио начали устанавливать кислородные приборы и для прохожих, наподобие наших автоматов для продажи газированной воды. Опустив в автомат монетку, каждый теперь может получить порцию кислорода и слегка проветрить легкие.

    На Земле найдется немало мест, где кислорода очень мало или вовсе нет. Чаще всего в этом повинны сами живые существа. Особенно много потребляют кислорода бактерии. Один миллиграмм их за час способен «сжевать» 200 кубических миллиметров кислорода. Следует сказать, что работающая мышца такого же веса за это время потребляет только 20, а во время покоя и того меньше – всего 2,5 кубического миллиметра кислорода. Из-за активной деятельности бактерий и более крупных микроорганизмов многие закоулки нашей планеты становятся малопригодными для жизни, и животным приходится всячески изощряться, чтобы освоить и эти экологические ниши.

    Одну из таких ниш приспособили для жилья электрические угри. Обитают эти крупные рыбы в болотах и небольших реках Южной Америки. В период дождей реки здесь становятся бурными, а через болота катятся потоки мутной воды. Бегущие струи богаты кислородом, и всем обитателям подводного царства дышится легко. Зато когда период дождей сменяется засухой, реки быстро мелеют, превращаясь в цепочки плохо соединенных между собой озер, а болота начинают пересыхать. В неглубоких лужах, прогретых лучами тропического солнца, загнивают растения, бешено размножаются микроорганизмы, потребляя кислород быстрее, чем он диффундирует из воздуха. Всем обитателям воды становится трудно дышать, у них появляется одышка.

    Только электрический угорь чувствует себя отлично, кажется, что он совсем не страдает от недостатка кислорода, да и пищи вволю. Всех обитателей «заморного» водоема так и тянет к тому месту, где он поселился. О живых электростанциях у нас еще будет специальный разговор. Сейчас скажем только, что электрические угри не гоняются за своей добычей. В коричневой, как кофейная жижа, воде не видно даже кончика собственного носа. Что-либо поймать здесь можно только случайно. Угри убивают добычу не глядя, не разбирая толком, что за дичь находится вблизи, мощными ударами электрического тока.

    В чем притягательная сила угрей? Может, они занимают самые лучшие места водоема? Ничуть не бывало, просто страшные рыбы обогащают кислородом окружающую воду. Разряд электрического тока напряжением до 600 вольт способен разлагать воду на составные части: кислород и водород. К этой-то живительной струйке и тянутся со всех сторон измученные недостатком кислорода рыбы.

    Во время электрического разряда разложение воды происходит также и в теле самого угря. Образовавшийся кислород тут же разносится кровью по всему телу, зато от водорода приходится освобождаться. Он через жабры выделяется наружу и длинными струйками крохотных пузырьков поднимается к поверхности воды. Выделение водорода выдает индейцам-охотникам местонахождение опасного хищника, и они спешат уничтожить истребителя рыб, чтобы самим не лишиться рыбного стола.

    Рядом с угрями в водоемах Южной Америки живет другая интересная рыба – лепидосирен. Она обитает даже в полностью пересыхающих болотах. Здесь и в период дождей с кислородом бывает туговато. Взрослые рыбы от недостатка кислорода не страдают. Их плавательный пузырь превратился в парный дыхательный орган. Они дышат воздухом. Но как сохранить в такой воде икру? У лепидосирен возникла прямо-таки уникальная форма заботы о потомстве – снабжение икры кислородом. Эту функцию выполняет самец. Как только наступает период дождей, он подыскивает на дне небольшую, но по возможности глубокую ямку или какую-нибудь норку и приводит туда свою подругу. Когда икра отложена и оплодотворена, самка спокойно уплывает, оставляя потомство на попечение отца.

    С наступлением периода размножения самцы лепидосирен одеваются в брачный наряд. В это время у них на брюшных плавниках отрастают необычайно длинные нитевидные отростки. Очень интересное зрелище являет собой расфуфыренный самец, когда он ухаживает за самкой или, опустив плавники к самой икре, охраняет гнездо. Брачное убранство самцов предназначено не только для привлечения самки, плавники выполняют роль шлангов, по которым к икре подается кислород. Временные отростки плавников очень богаты сосудами, это позволяет кислороду из крови рыб выходить в окружающую воду.

    Если самцу для гнезда удастся найти вполне подходящее место, то снабжение кислородом обеспечить не трудно. Ямка или норка должны находиться на неглубоком месте и быть резко отграничены от остального водоема. Тогда самцу удобно, оставаясь над гнездом, хватать с поверхности воздух, максимально обогащая кровь кислородом, чтобы он интенсивнее выделялся в воду. Если детская достаточно миниатюрна, то в неподвижной стоячей воде болота легко насытить кислородом свое гнездо.

    В водоемах есть еще один источник кислорода. Это зеленые растения. Если их мало и выделяемого ими кислорода недостаточно, чтобы насытить воду, приходится обращаться непосредственно к зеленым друзьям. Многие насекомые именно так и поступают. Иногда они скапливаются на растениях в очень большом количестве, ведь здесь концентрация кислорода должна быть более высокой.

    Нередко на растениях можно найти крохотные пузырьки кислорода. Жуки макроплеа собирают эти пузырьки, как мы в лесу грибы, и лапками подносят к усикам. Через некоторое время пузырек исчезает, видимо, жуки дышат усами. Если на растениях пузырьков газа нет, жуки подрезают растения и ждут, когда из воздухоносных путей выделится воздух. Так же поступают водяные слоники.

    Личинки жуков донициа и макроплеа делают на растениях надрезы и присоединяют к ним дыхальца брюшка. Другие насекомые втыкают в растение стилет и сосут кислород из межклеточного пространства. Богатые кислородом межклеточные пространства – излюбленные места для окукливания.

    Еще сообразительнее оказались гусеницы бразильских парапониксов. Они строят себе дом из кусочков зеленых растений и по мере отмирания обновляют их. Благодаря этому днем на свету в гнездах парапониксов всегда много кислорода, зато ночью, чтобы не задохнуться от выделяемого растениями углекислого газа, гусеницам приходится вылезать наружу.

    Ничтожно мало кислорода в желудке и кишечнике позвоночных. Но и здесь его научились добывать существа, которым показалось тесно под солнцем. Среди них не последнее место занимает личинка желудочного овода, живущая в пищеварительном тракте лошадей. Как и все насекомые, личинка имеет для дыхания трахейную систему, только, может быть, более мощную и более разветвленную, чем у ее наземных собратьев, и красные органы – парное образование, состоящее из большого числа крупных красных клеток. К каждой клетке подходит трахеальный стволик и разветвляется в ее протоплазме на множество трахеол.

    Как функционируют красные органы, пока еще не совсем ясно, но что они играют главную роль в обеспечении личинки желудочного овода кислородом, не подлежит сомнению. Об этом свидетельствует большое количество гемоглобина, который и придает клеткам красный цвет, причем его сродство с кислородом, то есть способность вступать в соединение при самых небольших концентрациях этого газа, в сотни раз выше, чем у млекопитающих.

    Очень распространенный обитатель кишечника млекопитающих животных – аскариды. Еще недавно считали, что они научились обходиться без кислорода. Однако, к удивлению ученых, в теле свиной аскариды было обнаружено два сорта гемоглобина, который сосредоточен в двух местах, в стенке тела и в парентеральной жидкости, заполняющей полость тела. Наружный гемоглобин в 2500, а внутренний даже в 10 000 раз медленнее расстается с захваченным кислородом, чем гемоглобин свиньи.

    Для чего аскариде гемоглобин, если она может обходиться без кислорода? Теоретические расчеты показывают, что система из двух гемоглобинов с нарастающей жадностью к кислороду может быть идеальным его переносчиком, особенно в условиях значительного кислородного дефицита.

    Еще более низко организованные животные, и в первую очередь бактерии, не имеют гемоглобина и поэтому не могут активно извлекать кислород из окружающей среды. Между тем судьба нередко забрасывает их туда, где кислорода ничтожно мало или он полностью отсутствует. Тем не менее эти существа прекрасно себя чувствуют, легко мирясь с отсутствием кислорода. Их называют анаэробными, то есть живущими без воздуха.

    Как же удается анаэробам обходиться без кислорода? Еще сравнительно недавно этот вопрос казался неразрешимой загадкой. Теперь мы знаем, что без кислорода дело не обходится. Просто анаэробы получают его не из атмосферы, а из органических веществ, некоторые же бактерии умеют извлекать кислород даже из неорганических соединений, используя для этого нитриты и сульфиты.

    Сущность дыхательных процессов анаэробов состоит в том, что они умеют окислить продукты обмена, не прибегая к помощи дополнительного кислорода, вполне довольствуясь тем количеством, которое уже содержится в окисляемом веществе. Ведь чтобы вещество окислилось, безразлично, прибавлять ли к нему кислород или отнимать водород.

    Процесс окисления, когда отнимается водород, называют брожением. Брожение приводит к расщеплению органических веществ, в результате которого возникают окисленные и восстановленные вещества и высвобождается необходимая для организма энергия.

    Наиболее известный вид брожения, которое встречается у одноклеточных, – расщепление молекулы глюкозы с образованием двух молекул этилового спирта (восстановленное вещество) и двух молекул углекислого газа (окисленное вещество).

    У многоклеточных животных наиболее широкое распространение имеет молочнокислое брожение: расщепление углеводов, например молекулы сахара, на две молекулы молочной кислоты, в которых содержится меньше энергии, чем в исходном веществе. Расщепление углеводов происходит не сразу, а сопровождается целой серией реакций, в результате которых кислород, находящийся в молекуле сахара, у внутреннего атома углерода, переходит к внешнему, что и является причиной высвобождения энергии.

    Существует и еще один способ окисления, путем отдачи электрона, но возможность использования его живыми организмами изучена еще плохо.

    Почему же, если можно получать энергию путем брожения, у живых организмов возникла потребность в использовании атмосферного кислорода? Причин для этого немало, и они достаточно существенны. Брожение никогда не приводит к полному окислению вещества, и поэтому энергии выделяется мало. Если мы полностью окислим одну грамм-молекулу глюкозы до углекислого газа и воды, то получим 673 килокалории. При брожении же, в результате которого образуются этиловый спирт и углекислый газ, выделится всего 25 килокалорий, то есть почти в 27 раз меньше. Следовательно, чтобы получить одинаковое количество энергии, анаэробам приходится тратить в 27 раз больше глюкозы, чем ее расходуют аэробы. Заметная разница, природа не могла смириться с таким расточительством.

    Другая важная причина в том, что в результате брожения образуются различные вредные для организма вещества: этиловый и бутиловый спирты, молочная и масляная кислоты, ацетон и многие другие. Освобождаться от них не так-то легко.

    Нередко в процессе дыхания образуются горючие газы. Микроорганизмы часто выделяют водород. Так дышат микробы, живущие в кишечнике термитов. Среди многоклеточных животных особенно много водорода выделяют личинки некоторых мух. Кроме водорода, некоторые организмы могут выделять метан и другие еще пока неизвестные, в том числе и самовоспламеняющиеся, газы. Красочное зрелище представляет выход со дна водоемов скопившихся в иле газов, пузыри которых вспыхивают на поверхности воды голубоватым таинственным пламенем.

    Как же сумели животные так резко изменить свой способ дыхания и приспособиться к отсутствию кислорода? Оказывается, это было не трудно. Когда на Земле возникла жизнь, свободного кислорода здесь было мало и первые живые существа вынуждены были стать анаэробами. Только когда кислорода в атмосфере стало много, животные научились полностью сжигать энергетические продукты. Анаэробный же тип дыхания не исчез, а, передаваясь по наследству из поколения в поколение, дошел до нас. Как уже говорилось в начале этой главы, абсолютно у всех животных первые фазы освобождения энергии протекают без участия кислорода. Когда аэробным животным заблагорассудилось вновь переселиться в места, где кислород взять неоткуда, им опять пришлось ограничиться частичным использованием энергии, заключенной в пищевых веществах, вспомнить старые способы обезвреживания недоокисленных продуктов.

    Животный мир нашей планеты возник в эпоху, когда кислорода в атмосфере планеты было очень мало. Не мудрено, что живые организмы приспособились к его недостатку. Гораздо удивительнее, хотя мы этого обычно не замечаем, что животные, обитающие в условиях избытка кислорода, сумели сдерживать интенсивность окислительных процессов в организме, тушить всегда готовый вспыхнуть пожар.

    Количество кислорода в окружающей среде постоянно, а если и меняется, то только в сторону уменьшения. Поэтому у животных есть разнообразные приспособления для борьбы с недостатком кислорода, но нет ничего, что могло бы их защитить от его избытка.

    Впервые с возможностью кислородного отравления при использовании для дыхания чистого кислорода около ста лет назад столкнулся Бер. Это было для ученых так неожиданно, что ему не поверили. Возникло подозрение, что в использованном Бером кислороде содержались какие-то ядовитые примеси. Опыты были многократно повторены, но, как бы тщательно ни очищался кислород, животные, которые им длительно дышали, неизбежно гибли.

    Кислородными отравлениями заинтересовались не случайно. Разобраться в этом вопросе было необходимо для налаживания водолазной службы. Человек может находиться в атмосфере чистого кислорода лишь около суток. При более длительном дыхании кислородом возникает пневмония и смерть, как ни странно, от асфиксии, недостатка кислорода в важнейших органах и тканях. При давлении, равном 2–3 атмосферам, человек может находиться не больше 1,5–2 часов, потом наступает кислородное опьянение, нарушение координации движений, нарушение внимания, потеря памяти. При давлении кислорода свыше 3 атмосфер очень быстро начинаются судороги, приводящие к смерти.

    Для животных, живущих в условиях острого недостатка кислорода, он еще более ядовит. На этом основан способ борьбы с аскаридами, поселяющимися в кишечнике человека. Кислород, введенный в кишечник человека, опасности для него не представляет, но совершенно непереносим для паразита.

    Излишек кислорода опасен не только животным. Он оказывается вредным и для растений. Интересно, что атмосфера нашей планеты, которую растения насытили кислородом, для них неблагоприятна. Им маловато углекислого газа и, что еще удивительнее, слишком много кислорода. Как показали недавние исследования, не только обычная концентрация, но даже всего лишь 2 процента кислорода в среде, десятая часть того, что содержит атмосфера, заметно тормозит фотосинтез. Оказывается, растения создали сами для себя совсем неподходящую атмосферу. Будь кислорода меньше, они росли бы и развивались более интенсивно.

    Шлак и балласт

    В операционной царила деловитая тишина. Молодой врач – практикант склонился над юной пациенткой. Все уже было готово к операции, ждали только сигнала хирурга.

    – Давайте наркоз, – скомандовал высокий седеющий мужчина, не отходя от умывальника. – Я сейчас кончу мыться.

    Операция предстояла несложная. Но лежать на операционном столе все-таки страшно; не удивительно, что, когда первая порция эфира достигла легких, больная испугалась, сделала попытку освободиться от маски. Сестре приходится удерживать ее, молодой врач невольно форсирует наркоз. Результат энергичного введения наркоза проявляется быстро. Проходит минута-другая, мышцы расслабляются, больная затихает. Но почему такая странная неподвижность? Больная не дышит! Теперь уж сам наркотизатор поспешно снимает с нее маску и начинает делать искусственное дыхание.

    – Лобелии, – просит он сестру, и слышно, как дрожит его голос.

    Остановка дыхания в начальный период наркотизации в прошлом довольно частое и опасное осложнение. Оно может развиться при поспешном увеличении дозы газового наркоза. Хотя техника наркотизации в наши дни почти полностью исключает возникновение этого осложнения и дает в руки врачей надежные способы борьбы с его последствиями, встретиться с ним в первый же день самостоятельной работы, да еще благодаря собственной неосторожности, конечно, очень неприятно. Не удивительно, что наркотизатор теперь так же энергично делает искусственное дыхание. Проходят две-три томительные минуты, и больная делает первый вдох, затем второй, третий…

    – Достаточно, – командует хирург, но дыхание опять прекращается. Бледный, как полотно, наркотизатор вновь склоняется над операционным столом, чтобы продолжить искусственное дыхание.

    – Подождите, коллега, не волнуйтесь, – вмешивается опять хирург, – вы просто перевентилировали больную.

    Снова томительное ожидание. Наконец больная делает новый вдох, затем еще, еще. Постепенно дыхание становится чаще, ровнее.

    – Теперь продолжайте наркоз, пока больная совсем не проснулась, только не торопитесь, – советует хирург. Постепенно работа операционной входит в обычный ритм, а через полчаса больная уже в палате.

    Почему во время операции дважды произошла остановка дыхания? Причина первой понятна: слишком большая доза наркотического вещества угнетающим образом подействовала на дыхательный центр продолговатого мозга, и дыхание прекратилось. Причина второй остановки сложнее. Чтобы разобраться в ней, придется поговорить о регуляции дыхания. В этом участвуют три различных рецепторных прибора. Первый – нервные рецепторы легких, информирующие дыхательный центр мозга о степени их растяжения или спадения. Они сигнализируют мозгу, когда пора прекратить вдох или выдох и сменить его противоположным процессом.

    Более важными являются химические рецепторы. Одни из них находятся в сонных артериях и в аорте. Они следят за концентрацией кислорода, содержащегося в крови. Когда дыхательный центр получает информацию, что кислорода в крови мало, он дает команду к учащению дыхания, но нередко оно при этом делается поверхностным. Последнее происходит потому, что при недостатке кислорода дыхательный центр легко тормозится и информация даже о незначительном растяжении легких уже способна прерывать вдох.

    Хеморецепторы второго рода находятся в самом дыхательном центре. Они следят главным образом за концентрацией в крови углекислого газа. Если его становится слишком много, дыхание делается более глубоким. Когда наркотизатору пришлось делать искусственное дыхание, значительно усилилась вентиляция легких, поэтому кровь полностью насытилась кислородом, а углекислого газа стало очень мало. Исчезли два главных стимула дыхательных движений, а импульсы, приходящие из легких, падали на приторможенный дыхательный центр, и поэтому их силы оказалось недостаточно, чтобы вызвать вдох. Такое осложнение не опасно, когда нормальная концентрация углекислого газа восстанавливается (раз ткани продолжают дышать, его количество неизбежно увеличится), восстанавливается и дыхание.

    Таким образом, углекислый газ, вредный, ненужный продукт обмена, шлак, от которого организм спешит избавиться, оказывается не таким уже ненужным организму веществом.

    С тех пор как регуляция дыхательных движений стала понятна ученым, углекислый газ добавляют в некоторые газовые смеси, чтобы стимулировать работу дыхательного центра. Такую же добавку используют и при даче наркоза. Она повышает возбудимость дыхательного центра, а следовательно, обеспечивает и высокий уровень кислорода в циркулирующей по организму крови.

    Дыхательный центр автоматически регулирует ритм и глубину дыхательных движений. Однако мы имеем возможность произвольно вмешиваться в его работу, сознательно меняя объем легочной вентиляции, и даже на некоторое время прекращать дыхательные движения. Срок, на который мы можем останавливать дыхание, поддается известной тренировке. Японские ныряльщицы – ловцы жемчуга могут погружаться в воду на 4–6 минут! Им даже зарплату платят в зависимости от того, сколько времени они способны пробыть на дне.

    Такая тренированность имеет свою отрицательную сторону: она делает работу под водой особенно опасной, так как у человека есть лишь рецептор, сигнализирующий о недостаточном количестве кислорода в крови, но нет возможности судить, когда его станет угрожающе мало. Любителям, не слишком тренированным ныряльщикам, это не страшно, они не в состоянии пробыть под водой столько, чтобы исчерпать все запасы кислорода. Другое дело профессионалы, привыкшие подавлять работу дыхательного центра даже при значительной убыли кислорода. Они находятся под водой, пока не исчерпают все кислородные ресурсы, и легко могут перейти опасную черту. Тогда вследствие острого недостатка кислорода, от которого в первую очередь страдает мозг, наступает внезапная потеря сознания, и спасти ныряльщика может только немедленная помощь товарищей.

    Углекислый газ – опасный шлак. У него нет ни цвета, ни запаха, а его удельный вес значительно выше, чем у кислорода и азота. И там, где отсутствует движение воздуха, он может скапливаться. Подобные явления наблюдаются в пещерах, промытых водой, в известняках. Окружающие породы поставляют известные количества углекислого газа, который, стекая по подземным коридорам, может скапливаться в нижних частях пещеры, образуя своеобразные «озера». Не подготовленный к этому человек, попав в подобную пещеру, обычно гибнет. На земном шаре существует несколько так называемых собачьих пещер, где глубина «озер» углекислого газа невелика и для человека не опасна, так что люди их могут пересечь «вброд», но собаки, попав туда, «тонут».

    Третий и самый значительный компонент атмосферы после углекислого газа и кислорода – азот. Он не принимает никакого участия в дыхании, и при обычном давлении обмена азота между наружной средой и телом не происходит, так как в тканях его растворено столько же, сколько и в крови, а кровь, в свою очередь, оказывается насыщенной до предела.

    Если значительно увеличить наружное давление, то по отношению к атмосферным газам кровь окажется недонасыщенной, она их будет интенсивно поглощать и передавать тканям, пока между этими тремя средами не установится новое равновесие.

    Теперь, если давление вернется к норме или значительно понизится, газы, растворенные в тканях, будут возвращаться в кровь. Кислород при этом не окажет никакого вредного воздействия, он слишком быстро расходуется, зато азота в кровеносных сосудах скопится столько, что он не сможет раствориться в крови, не будет успевать выводиться через легкие наружу из организма. Пузырьки азота могут закупорить мелкие сосуды. Если это будут сосуды сердца или мозга, может наступить смерть. Единственный способ спасти больного – подвергнуть его действию высокого давления, дать возможность азоту снова раствориться в крови и тканевых жидкостях, а затем очень постепенно вернуть давление к норме, с тем чтобы излишек азота успел покинуть организм. Обычно в воздухе есть пыль и водяные пары. Чистота воздушных бассейнов над нашими городами – одна из важнейших гигиенических проблем. Подумать только, воздух считается чистым, если в одном кубическом сантиметре его не больше шести тысяч пылинок. Если кому-нибудь покажется, что это слишком много, знайте, воздух, которым нам приходится дышать у себя дома, нередко содержит 2 миллиона пылинок в кубическом сантиметре, которые весят около 10 миллиграммов! Не удивительно, что до начала газификации наших городов в Харькове и Ленинграде на один квадратный километр в год выпадало 300–350 тонн пыли, а в Магнитогорске – свыше 700! Если бы у нас не было приспособлений, оберегающих легкие от проникновения в них пыли, у городских детей они уже в течение первого года жизни были бы полностью забиты грязью.

    В отличие от пыли водяные пары полезны, они предохраняют организм от излишней потери влаги. Гигиенической нормой для помещений считается 60 процентов насыщения воздуха водяными парами. При меньшей влажности человек чувствует себя неуютно.

    Последним компонентом, который организм получает из атмосферы, является электричество. О том, что легкие в течение суток «пережевывают» изрядное количество электричества, обычно забывают, хотя приток электричества имеет существенное значение для нормального течения жизненно важных процессов организма.

    Что это за электричество, которое поглощают наши легкие, и откуда оно берется в атмосфере? О его существовании ученые узнали лишь в конце прошлого века. Оказалось, что под действием урана и других радиоактивных элементов, в ничтожных количествах содержащихся в любой почве, под действием космических и ультрафиолетовых лучей, при электрических разрядах, разбрызгивании воды и трении пылевых частиц от атомов и молекул газа отрываются электроны. Сам по себе оторванный свободный электрон долго существовать не может. Очень скоро он присоединяется к одному из нейтральных атомов или к молекуле. Электрон, как известно, несет на себе отрицательный заряд, который он сообщает принявшей его молекуле. Молекула, потерявшая электрон, напротив, оказывается заряженной положительно, так как ядро любого атома несет положительный заряд, равный заряду всех его электронов.

    Заряженные молекулы атмосферных газов называют аэроионами. Одни из них оседают на пылевых частицах, образуя тяжелые ионы, другие объединяются с несколькими нейтральными молекулами, образуя легкие ионы.

    Больше всего аэроионов образуется в самой почве или около нее. В среднем в одну секунду в каждом кубическом сантиметре припочвенного воздуха создается 8–10 пар ионов. Однако они при этом обычно не накапливаются, так как часть из них при столкновении двух противоположно заряженных ионов уничтожается, а остальные адсорбируются на твердых или жидких телах или диффундируют в места, где их мало.

    Хотя ионы всегда образуются парами, в окружающем нас воздухе обычно преобладают ионы какого-то одного заряда. Чаще всего легкие положительные ионы. Так происходит потому, что земля имеет отрицательный заряд, а в атмосфере существуют объемные положительные заряды. Под их воздействием отрицательные аэроионы поднимаются вверх, а положительные опускаются вниз, скапливаясь в самых нижних слоях атмосферы. Количество тяжелых ионов зависит от запыленности воздуха. Обычным считается преобладание тяжелых ионов над легкими не больше чем в 50 раз.

    Нужны ли организму животных эти заряженные молекулы газа? Оказывается, очень нужны. В опытах А.Л. Чижевского подопытные животные, помещенные в атмосферу, где ионов очень мало, тяжело болели, а если их заставляли дышать воздухом, совсем не имеющим электрического заряда, они погибали через 1,5–5 суток!

    Очень высокая концентрация аэроионов, особенно положительных, тоже вредна для организма. Фен – горный ветер Тироля, язами – юго-восточный ветер Японии, сирокко – южный ветер Италии приносят с собой много положительных ионов, вызывая у людей тоскливое настроение, головную боль, общее недомогание, повышение кровяного давления, ухудшая течение туберкулеза и некоторых других недугов. Очень тяжело переносится смена заряда окружающей атмосферы, но сами отрицательные аэроионы чаще вызывают благоприятный эффект, улучшают состояние туберкулезных больных, снижают кровяное давление и способствуют выздоровлению при многих других, в том числе и инфекционных, заболеваниях.

    Большим количеством легких отрицательных ионов объясняют лечебный эффект многих курортов. Особенно много отрицательных аэроионов в некоторых районах побережья Балтийского моря, возле водопадов, горных речек и мощных фонтанов. Полученные организмом электрические заряды, конечно, не скапливаются в нашем теле. Ткани хорошо проводят электрический ток, и поэтому приобретенные нами заряды постепенно уходят в землю.

    Существует много различных предположений о механизме действия атмосферного заряда на живой организм. Среди них наибольшего внимания заслуживают два. Согласно первому электрические заряды молекул действуют на нервные окончания легочной ткани и тем самым оказывают сильное воздействие на функциональное состояние центральной нервной системы в целом.

    Вторая теория предполагает, что аэроионы, попадая в легкие, передают свой заряд в кровь и содержащимся в ней эритроцитам. Перенося к отдельным органам и тканям полученный в легких заряд, кровь тем самым оказывает на эти органы определенное воздействие.

    Какая из двух теорий верна, сказать трудно. Пожалуй, больше фактов говорит в пользу второй. Однако для окончательных выводов потребуются длительные исследования.









     


    Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх