|
||||
|
Часть II. Развитие основных направлений классической физики ( XVIII-XIX вв.) Глава первая. Завершение научной революции в XVIII в. Историческкие замечания «Мы живем в такое время, в которое науки после своего возобновления в Европе возрастают и к совершенству приходят», — писал М. В.Ломоносов в 1746 г. в своем предисловии к «Воль-фианской физике». Характеризуя революционный процесс «возобновления наук», Ломоносов указывает в качестве главной причины, тормозящей прогресс науки во времена средневековья, преклонение перед авторитетом Аристотеля и особенно подчеркивает заслугу Картезия (Декарта), который своим критическим анализом «открыл дорогу к вольному философствованию и к вящему наук приращению». Образно и ярко харак теризует Ломоносов успехи астрономии, математики и естествознания в эпоху Галилея — Ньютона и отмечает, что эти успехи обусловлены тем, «что ныне ученые люди, а особливо испытатели натуральных вещей, мало взирают на родившиеся в одной голове вымыслы и пустые речи, но больше утверждаются на достоверном искусстве. Главнейшая часть натуральной науки—физика ныне уже только на одном оном свое основание имеет. Мысленные рассуждения произведены бывают из надежных и много раз повторенных опытов». Замечательное предисловие Ломоносова свидетельствует о том, как глубоко и четко передовой ученый середины XVIII в. осознавал свою причастность к великому перевороту в науке, произведенному Галилеем, Кеплером, Бойлем, Герике, Гюйгенсом, Ньютоном и другими естествоиспытателями XVII в. Он хорошо понимал значение перехода от схоластического метода средневековых ученых к науке, основанной на «достоверном искусстве» эксперимента. Ломоносов выразил в предисловии мысли и настроения своих современников, завершающих дело Галилея — Ньютона. К тому времени расширилась область применения эксперимента в физике и химии. Эксперимент стал широко применяться в исследовании тепловых и электрических явлений, в анализе химических реакций, в биологии. Использование математики в астрономии и механике привело к замечательным успехам небесной механики и к созданию аналитической механики Эйлера— Лагранжа. Механика, освободившись от громоздких геометрических методов Ньютона, стала изящной математической дисциплиной. Выделившись из остальной физики, она представила образец для физических теорий. Научный прогресс был неразрывно связан с социальным прогрессом. Существовали глубокие социальные причины научной революции, о которых писали К.Маркс в «Капитале» и ф. Энгельс в «Введении» к «Диалектике природы» и в работе «Развитие социализма от утопии к науке». Научная революция произошла в историческую эпоху перехода от феодализма к капитализму. Этот исторический процесс развивался в XVIII в. с нарастающей силой. Вслед за Англией наступила очередь франции, в которой в течение всей первой половины столетия шла напряженная борьба «третьего сословия» против дворянства и духовенства. Идеологи третьего сословия — французские просветители и материалисты — развернули кипучую деятельность, ставшую по сути дела идеологической подготовкой революции. Едкой и беспощадной критике подвергалась католическая церковь— идеологический оплот феодализма, пропагандировались идеи естественного равенства всех людей, идеи общественного переустройства на новых «естественных» и «разумных» началах. Рис. 18 Машина Ньюкомена Писатели и философы, политические деятели критиковали устои феодального общества. Комедии Бомарше, романы и философские сочинения Вольтера, общественные и педагогические идеи Руссо, философские произведения Дидро, Ламетри, Гельвеция, Гольбаха и других с разной силой, на разных уровнях и с различных сторон расшатывали устои феодализма. Особую роль в деятельности французских просветителей и философов играла наука. Законы науки, законы разума лежали в основе их теоретических концепций. Вольтер в своих книгах «философские письма», «Основы философии Ньютона» знакомил французских читателей с теорией Ньютона. По его инициативе и под его непосредственным влиянием ученая маркиза Эмилия дю Шатлэ перевела на французский язык «Начала» Ньютона, снабдив перевод написанными ею дополнениями «Сокращенное изложение системы мира» и «Аналитическое решение важнейших задач, относящихся к системе мира». Вольтер написал к переводу «Историческое предисловие». Перевод вышел в 1759 г., спустя десять лет после смерти Шатлэ. С 1751 г. начала выходить знаменитая «Энциклопедия, или Толковый словарь наук, искусств и ремесел» под редакцией Дидро и Даламбера. В первых томах «Энциклопедии» сотрудничали Вольтер и Руссо. До 1757 г. Дидро редактировал «Энциклопедию» вместе с математиком Даламбером. С 1757 г. и до выхода последнего тома (1780) изданием руководил Дидро. Влияние идеологов французской революции распространилось далеко за пределы франции. Они сыграли огромную роль в духовном развитии человечества, французский материализм был одним из источников марксизма. В.И.Ленин открывает свое фундаментальное философское произведение «Материализм и эмпириокритицизм» вводной главой, в которой, в частности, подробно останавливается на критике субъективного идеализма материалистом Дидро. В развитии русского общественного сознания — философии и литературы — деятельность французских писателей и философов XVIII в. сыграла значительную роль. Французские просветители и материалисты, высоко оценивая роль разума и науки, стали «виновниками» того, что в историю науки и культуры XVIII век вошел под названием «век разума».. Это название утвердилось, несмотря на то что в том же XVIII в. возникла идеалистическая реакция на успехи науки. Субъективный идеализм епископа Джорджа Беркли (1684—1753), скептицизм Давида Юма (1711—1776), учение о непознаваемых «вещах в себе» Иммануила Канта (1724—1804) сложились также в XVIII в Отсюда берет начало расхождение естествознания и философии, особенно четко определийшееся в период господства немецкой классической философии Шеллинга, Гегеля, фихте, о чем еще будет более подробно рассказано. Вернемся, однако, к социальной истории XVIII в Переход от феода лизма к капитализму отмечен в этом столетии тремя крупными вехами Это, во-первых, американская революция 1775—1783 гг, в результате которой на политической карте мира появилось новое независимое государство — Соединенные Штаты Америки Маркс отмечал, что «американская война XVIII столетия за независимость прозвучала набатным ко локолом для европейской буржуазии »(Маркс К Капитал — Маркс К , Энгельс ф Соч 2 е изд , т 23, с 9 ) Рис. 19. Проект паровой машины И.И. Ползунова За этим набатным колоколом разразился пожар Великой французской революции (1789—1794), обеспечившей победу буржуазии над феодальным дворянством. Наряду с политическими революциями в XVIII в происходила и экономическая промышленная революция, в результате которой ремесленный способ производства был вытеснен фабрично-заводским Именно в этом столетии начался процесс капиталистической индустриализации Он начался в Англии и вошел в историю под названием «Промышленный переворот в Англии» Маркс считал началом переворота дату изобретения,, английским изобретателем Джоном Уайяттом (1700—1766) первой прядильной машины (1733) Действительно, промышленный переворот начался в хлопчатобумажном производстве с изобретения прядильной машины Однако от изобретения Уайятта до организации первой прядильной фабрики, оборудованной машинами, лежал длительный и трудный путь Уайятт, Харгривс и другие изобретатели не добились успеха Ловкий предприниматель парикмахер Ричард Аркрайт (1732—1792) сумел поставить на практические рельсы изобретение прядильной машины, построив в 1771 г первую прядильную фабрику, оборудованную запатентованными им машинами Аркрайт стал первым фабрикантом Англии, родоначальником современных промышленных «тузов» фабрика потребовала универсаль ного двигателя В крепостнической России на алтайских заводах гениаль ный русский механик Иван Иванович Ползунов (1728—1766) думал о том, что бы «пресечь водяное руководство» и перейти от привязанного к реке водяного колеса к тепловому двигателю— «огненной машине» Такие машины были известны с на чала XVIII в (Ньюкомен, 1705) Это были по существу пароатмосферные насосы, применявшиеся для откачки воды из шахт, для подачи воды в фонтаны увеселительных парков. Ползунов построил пароатмосфер-ную машину непрерывного действия с автоматическим впуском и выпуском пара и инжектированием холодной воды для образования вакуума. К сожалению, преждевременная смерть изобретателя (машина испытывалась уже после его кончины) и неблагоприятные условия в феодальной России помешали довести интересное и важное начинание до конца. Изобретение Ползунова было надолго забыто. Универсальный паровой (а не пароатмосферный) двигатель с отделением конденсатора от рабочего цилиндра и непрерывным действием был создан английским изобретателем Джемсом Уаттом (1736—1819). Паровые машины работали на многих фабриках и заводах Англии, приводили в движение колеса пароходов (фультон, 1807). Создавались первые паровозы. Наступала эпоха пара. Таким образом XVIII в. в истории общества обеспечил победу капитализма над феодализмом и положил начало эпохе промышленного капитализма в Европе и Америке. Наука в России. М.В. Ломоносов Процесс развития капитализма происходил неравномерно и в каждой стране по-своему. Так, в молодой буржуазной республике США капиталистическая «свобода» и буржуазная демократия сочетались с рабовладением и работорговлей. В России в результате петровских реформ создавалась промышленность и развивалась внутренняя и внешняя торговля на основе крепостного строя и помещичьего хозяйства. Сильны были феодальные порядки в раздробленной Германии, Австрии и Италии. Характерно, что именно в этих странах наука отставала от английской и французской науки, а после победы французской революции наука в области точного естествознания во франции заняла ведущие позиции. Петр I хорошо понимал значение науки для интенсивно развивающегося государства. Во время своих заграничных поездок он знакомился с организацией науки в Лондоне и Париже. Он поддерживал контакт с виднейшим представителем немецкой науки Лейбницем, советовался с ним по вопросу организации высшего научного учреждения в России. К тому времени сложились два основных типа таких учреждений: Лондонское Королевское общество и Парижская Академия наук. Лондонское Королевское общество, хотя и называлось Королевским, было объединением частных лиц, вносивших членские взносы на расходы общества по постановке экспериментов, по изданию печатных материалов, переписке и т. д. Ньютон, как несостоятельный человек, был при избрании его членом общества освобожден от уплаты членских взносов по поданному им заявлению. Иное дело Парижская Академия. Она содержалась на средства короля, академики получали «пенсион» и, таким образом, являлись королевскими служащими. Петр I выбрал в качестве образца парижский вариант. Но ему хотелось, чтобы академия решала задачу подготовки национальных научных кадров. Его указ предписывал учредить при академии гимназию и университет. Однако академики не очень стремились выполнять педагогические обязанности, и академические учебные заведения влачили жалкое существование. В конце концов преподавание сосредоточилось в специальных средних и высших учебных заведениях, не связанных с академией. Так, в 1755 г. в Москве по инициативе Ломоносова был организован университет, ныне носящий имя своего великого основателя. Проблема подготовки национальных кадров в первые годы существования академии решалась плохо. Немало энергии потратил М.В.Ломоносов, чтобы добиться изменения положения к лучшему. В академии долгие годы ведущую роль играли немцы, и борьба русских и «иноязычных» ученых пронизывает всю историю Академии наук до Октября. Указ Петра I об учреждении Академии наук был подписан 28 января 1724 г. Ровно через год после подписания указа Петр I умер, и академия начала работать уже при его преемниках. Это время было очень неблагоприятным для успешного развития академии. Дворцовые перевороты, смена временщиков поглощали все внимание правящей верхушки, которую академия мало интересовала. Собравшиеся в 1725 г. в Петербурге ученые составили сильный научный коллектив, из которого особую известность получили Д. Бернулли (1700-1782) и Л. Эйлер (1707-1783). Даниил Бернулли и Леонард Эйлер были не только крупными математиками, но и естествоиспытателями, оставившими глубокий след в механике и физике. Широта научных интересов Эйлера поразительна: он занимался различными областями математики, механики, астрономии, физики, техники и даже сельского хозяйства. Его интересовали проблемы логики, философии, статистики. Каталог его сочинений содержит около 900 названий. Даниил Бернулли является автором знаменитой «Гидродинамики», вышедшей в 1738 г. Оттуда вошло в учебники известное «уравнение Бернулли»; здесь был дан вывод закона Бойля — Мариотта на основе кинетической модели газа. Широкой известностью пользовались в свое время физики Бильфингер и Крафт. Последний основал в академии физический кабинет, в котором сам начал экспериментировать. Ему принадлежит одна из первых калориметрических формул для определения температуры смеси горячей и холодной воды. Академия наук с 1728 г. начала издавать научный журнал «Commentarii», сразу завоевавший широкую известность в научных кругах. В «Комментариях» Петербургской Академии наук считали за честь печататься видные зарубежные ученые. Научное лицо Петербургской Академии наук с первых лет ее существования определилось: она начала работать как первоклассное научное учреждение. Однако неблагоприятные политические условия тяжело отразились на работе молодой академии. Один за другим академики уезжали за границу, уехали Бернулли и Эйлер, Герман и Крафт. Академическими делами самовластно распоряжалась академическая канцелярия, которой командовал пронырливый библиотекарь Шумахер. В таком состоянии нашел академию будущий первый русский академик Михаил Васильевич Ломоносов. Биография Ломоносова достаточно хорошо известна, хотя в ней еще есть немало белых пятен. Только недавно установлено место его рождения; деревня Мишанинская, вблизи Холмогор, Архангельской губернии. День его рождения датируется «Михайловым днем» (8 ноября старого стиля) 20 ноября 1711 Г.Ломоносов был сыном крестьянина-помора Василия Дорофеева. Мы не знаем точно, под влиянием каких обстоятельств родилась у молодого сына рыбака страсть к науке. Сам Ломоносов называл «вратами своей учености» «Грамматику» Мелетия Смотрицко-го и «Арифметику» Леонтия Магницкого. В истории русской культуры и науки эти книги, из которых одна была своеобразной энциклопедией церковнославянского языка, а другая — энциклопедией математических наук, занимают видное место и характеризуют уровень науки и просвещения в России, достигнутый к началу XVIII столетия. Эти книги и, по всей вероятности, беседы с бывалыми людьми пробудили в Ломоносове жажду знания, и зимой 1730 г. он отправился в Москву учиться. В 1731 г. он поступил в тогдашнее высшее учебное заведение — Заиконоспасскую духовную академию в Москве. Впоследствии Ломоносов сам описывал трудные условия, в которых в течение пяти лет проходило его учение. Рис. 20. Страница 'Арифметики' Магницкого Однако даровитого юношу не удовлетворяла церковная схоластика и жизненные перспективы по окончании академии. Одно время он подумывал ехать священником в экспедицию. Счастливый случай круто повернул его судьбу. Организованная при Петре I промышленность по добыче и переработке металлических руд остро нуждалась в специалистах. Предполагалось выписать их из-за границы. Но в академии и в сенате нашлись люди, понимавшие, что настало время приступить к подготовке собственных кадров. По представлению «командира академии» Корфа сенат издал указ об отборе из числа учащихся существовавших тогда учебных заведений наиболее способных для продолжения образования в академическом университете. Во исполнение указа было отобрано двенадцать молодых людей, в том числе и студент Заи-коноспасской академии Михаиле Ломоносов, прибывший в Петербург 1 января старого стиля 1736 г. За границу были посланы трое: Ломоносов, Виноградов и Рейзер — для подготовки из них специалистов горного дела. Сначала они должны были пройти общий курс наук в Марбурге у известного философа Христиана Вольфа. Выражаясь современным я зыком молодые люди должны были сначала пройти аспирантуру у Вольфа, а в дальнейшем — специальную подготовку по горному делу у Генкеля во фрейбурге. Титульный лист 'Слова о происхожении света' М.В. Ломоносова За границей Ломоносов пробыл пять лет. Это были напряженные и бурные годы его жизни. Он испытал немало жизненных приключений, которые иной раз могли окончиться для него весьма плачевно, но вместе с тем упорно и напряженно работал и вернулся в Россию в 1741 г. сложившимся ученым с определенными научными убеждениями и принципами. С этого времени и до конца своей жизни Ломоносов трудился над приведением академии в «доброе состояние», над созданием условий, способствующих «процветанию наук» в России. Его личная научная работа поистине всеобъемлюща. Он первый русский профессор химии (1745), создатель первой русской химической лаборатории (1748), автор первого в мире курса физической химии. В области физики он оставил ряд важных работ по кинетической теории газов и теории теплоты, по оптике, электричеству, гравитации и физике атмосферы. Он занимался астрономией, географией, металлургией, историей, языкознанием, писал стихи, создавал мозаичные картины, организовал фабрику по производству цветных стекол. Это был многогранный ученый, оставивший яркий след в разных областях науки, техники, литературы и искусства. Страница из письма Ломоносова к Эйлеру, на которой дана формулировка закона сохранения К этому надо добавить неутомимую общественную и организаторскую деятельность М.В.Ломоносова. Он активный член академической канцелярии, издатель академических журналов, организатор университета, руководитель ряда отделов академии. Эта разносторонняя кипучая деятельность, связанная с борьбой против «недругов наук российских», надломила силы Ломоносова. Он скончался 4 апреля 1765 г., не прожив и пятидесяти четырех лет. Проследим основные этапы научного пути Ломоносова. Это поможет нам не только понять историческое значение Ломоносова-ученого, но и ознакомиться с идеями и проблематикой науки первой половины XVIII в. Первыми научными трудами Ломоносова были сочинения, посылаемые им из Германии в Академию наук в качестве отчета о своих научных занятиях. 15 октября 1738 г. Ломоносов отправил в академию вместе с рапортом перевод оды фенелона и написанную на латинском языке «Работу по физике о превращении твердого тела в жидкое в зависимости от движения предсуществующей жидкости». В марте 1739 г. «студент математики и философии Михаиле Ломоносов» представил в Академию наук физическую диссертацию «О различии смешанных тел, состоящем в сцеплении корпускул». В Марбурге же Ломоносов начал большое сочинение «Элементы математической химии», рукопись которой, хранящаяся в архиве Академии наук, помечена 1741 г. Это сочинение осталось незаконченным, общий план задуманного Ломоносовым большого труда содержится в конце рукописи. Вообще следует подчеркнуть, что законченных и опубликованных трудов по физике и химии у Ломоносова немного, большая часть осталась в виде заметок, фрагментов, неоконченных сочинений и набросков. В Полном собрании сочинений Ломоносова в первых четырех томах, содержащих работы по физике, химии, астрономии и приборостроению, опубликовано 85 работ, из них законченных и опубликованных при жизни Ломоносова 27, в том числе одна переводная книга «Вольфианская физика» и одна переводная брошюра («Описание появившейся в начале 1744 года кометы»). Таким образом, при жизни Ломоносова было завершено и опубликовано менее трети его работ. В то же время, начиная с 1741 г., ежегодно публиковались оды и стихи Ломоносова, несколько изданий выдержали «Риторика» и «Грамматика» Ломоносова, выходили его исторические и географические труды. Вполне естественно, что Ломоносов долгое время был известен прежде всего как поэт и писатель и при слабом развитии истории естествознания в России фигурировал в учебниках истории словесности как один из первых русских писателей. Только Пушкин правильно расставил ударения на деятельности Ломоносова, подчеркнув его роль как ученого и просветителя, назвав его «первым русским университетом». Возвращаясь к началу научного пути Ломоносова, следует подчеркнуть, что как его студенческие работы, так и в особенности «Элементы математической химии» предопределяют дальнейший ход развития его научных воззрений. Ломоносов начинал свой научный путь в эпоху становления химии как науки, кристаллизации ее основных понятий и методов. Химия XVII в. еще не освободилась от алхимических представлений и была своеобразным искусством приготовления веществ, нужных для практических целей. Алхимики искали средств превращения обычных веществ в благородные металлы, создания удивительного вещества— «философского камня». Теория четырех элементов Аристотеля позволяла надеяться на достижение этих целей. Комбинируя первичные «качества» и подбирая сочетания «элементов», можно было надеяться получить вещество с любыми свойствами. Неудачи алхимиков в достижении больших целей привели к замене недостижимых целей более практическими, к изготовлению лекарственных средств, к поискам полезных для технологических целей рецептов. В этих поисках был накоплен огромный эмпирический материал, для обработки которого элементы Аристотеля были совершенно недостаточной базой. Химики вводили новые «элементы», подсказываемые химической практикой. К аристотелевским элементам они добавляли ртуть, являющуюся, как они думали, началом металлического блеска, серу, служащую началом горючести, и соль — началом растворимости. Эти «философские» элементы не отождествлялись с конкретными — ртутью и серой, они являлись носителями указанных «начал». Металлургическая практика стимулировала особый интерес к металлам и их окислам. Процесс восстановления металлов из их руд нуждался в теоретическом истолковании. В 1703 г. врач прусского короля Георг Эрнест Шталь (1660—1734) предложил гипотезу особого горючего вещества—флогистона. Шталь считал флогистон невесомым и даже допускал для него отрицательный вес. Металл, по Шталю, представляет собой соединение особого землистого вещества и флогистона, который выделяется при процессах окисления, а в процессе восстановления поглощается. «Гипотеза Сталя, — писал Д. И. Менделеев в «Основах химии»,— отличается большой простотой, она в середине XVIII века нашла себе многих сторонников». Ее принимал и М.В.Ломоносов в сочинениях «О металлическом блеске» (1745) и «О рождении и природе селитры» (1749). флогистические воззрения встречаются в некоторых, его физико-химических заметках, в «Курсе истинной физической химии» (1752—1754), «Слове о рождении металлов» (1757), «Слове о происхождении света» и других сочинениях. В сочинениях Ломоносова, в частности в «Слове о происхождении света», фигурирует и концепция трех элементов: ртути, соли и серы. Это и не удивительно. Ломоносов учился химии по распространенным тогда учебникам Бургаве, Шталя и Штабеля. Его учитель химии и горного дела Генкель был ограниченным эмпириком и не мог передать Ломоносову основательных химических воззрений. Во времена Ломоносова были известны только два газа: воздух и углекислый газ. Водород, кислород и азот были открыты после его смерти. В этих условиях создать правильную теорию горения было просто невозможно. Поразительно, что молодой Ломоносов увидел недостатки в современной ему науке и наметил правильные теоретические основы химии. В сочинении «О действии химических растворителей вообще», написанном в 1743 г., опубликованном в 1750 г., Ломоносов отмечает, что, несмотря на длительные труды многих людей, химия «все еще покрыта глубоким мраком и подавлена своей собственной громадой». «От нас, — продолжает Ломоносов,— скрыты подлинные причины удивительных явлений, которые производит природа своими химическими действиями, потому до сих пор нам неизвестны более прямые пути, ведущие ко многим открытиям, которые умножили бы счастье человеческого рода». Из этой цитаты, между прочим, видно, что теория, которая открыла бы пути «ко многим открытиям», имеет и важное практическое значение, поскольку научные открытия умножают «счастье человеческого рода». В науке, по мнению Ломоносова, теория и практика неразрывно связаны. Уже в одной из своих первых работ — «Элементы математической химии» — Ломоносов утверждает: «Истинный химик должен быть теоретиком и практиком». В этой работе Ломоносов называет химию наукой, а не искусством, какой она еще считалась и фактически была в те времена. Ломоносов в противоположность этому общепринятому взгляду на химию высказывает твердое убеждение, что «занимающиеся одной практикой — не истинные химики». «Истинный химик, — говорит Ломоносов,— ...должен быть также и философом». В основе химических явлений, по Ломоносову, лежит движение частиц — «корпускул». Поэтому, «кто хочет глубже постигнуть химические истины», тот должен «изучать механику». «А так как знание механики предполагает знание чистой математики, то стремящийся к ближайшему изучению химии должен быть сведущ в математике». Так при самом зарождении химической науки Ломоносов, сам только начинавший свой научный путь, ясно понял, что химическая теория должна строиться на законах механики и математики. Современная теоретическая химия основывается на квантовой механике, для понимания которой нужно глубокое знание математики, и тем самым воочию подтверждает правоту учения Ломоносова. 6 сентября 1751 г. Ломоносов вновь высказал свои идеи об основаниях химической науки в своем знаменитом «Слове о пользе химии», произнесенном на публичном собрании Академии наук. Это слово Ломоносов произнес, будучи академиком, организатором первой в России химической лаборатории, лектором первого в мире курса физической химии. Здесь Ломоносов вновь подчеркнул, что для успеха химической науки «требуется весьма искусный химик и глубокий математик в одном человеке». «Химия руками, математика очами физическими по справедливости назваться может». Ломоносов в своем «Слове» раскрывает важную роль в общественном прогрессе химии, физики и металлургии. Он указывает на большое практическое значение химии. «Широко распростирает химия руки свои в дела человеческие!» — восклицает Ломоносов. Вместе с тем он лишен ограниченности специалиста и предостерегает слушателей, чтобы они не думали, что он якобы «всечеловеческой жизни благополучие» видит в одной химии. «Имеет каждая наука равное участие в блаженстве нашем», — указывает Ломоносов. Ломоносов является одним из основателей научной химии, глубоко понимавшим ее задачи и назначение. Он первым заговорил о физической химии как науке, объясняющей химические явления на основе законов физики и использующей физический эксперимент в исследовании этих явлений. Тем самым он опередил свою эпоху более чем на сто лет. Практическую часть химии, то, что относится «к наукам экономическим, фармации, металлургии, стекольному делу и т. д.», Ломоносов предлагает отнести «в особый курс технической химии», опять-таки опередив свое время. В химических работах Ломоносова важную роль играет атомистика, которая служит краеугольным камнем его научного мышления. Ломоносов является одним из основателей механической теории теплоты и кинетической теории газов. В своих работах на эту тему он сводит теплоту и упругость газов к движениям «нечувствительных частиц». Как химик-практик, Ломоносов не мог еще отказаться от флогистона, но, как физик-теоретик, он категорически выступил против концепции теплорода, считая ее рецидивом аристотелевского «элементарного огня». Заметим, что автор кислородной теории горения Лавуазье еще считал теплород (calorique) одним из химических элементов. В физике концепция теплорода господствовала целое столетие после опубликования классической работы Ломоносова «Размышления о причине теплоты и холода» (опубликована в 1750 г. на латинском языке в «Новых Комментариях»). В научной системе Ломоносова важное место занимает «всеобщий закон» сохранения. Впервые он формулирует его в письме к Леонарду Эйлеру от 5 июля 1748 г. Здесь он пишет: «Но все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется к какому-либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования, и т. д. Так как это всеобщий закон природы, то он распространяется и на правила движения: тело, которое своим толчком возбуждает другое к движению, столько же теряет от своего движения, сколько сообщает другому, им двинутому». Печатная публикация закона последовала через 12 лет, в 1760 г., в диссертации «Рассуждение о твердости и жидкости тел». Здесь в русском переводе конец читается так: «Сей всеобщий естественный закон простирается и в самые правила движения; ибо тело, движущее своею силою другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает». Это, по-видимому, первая в истории физики формулировка закона «сохранения силы». До введения Ранкиным термина «энергия» закон сохранения энергии именовался законом сохранения силы. У Ломоносова он является частным случаем всеобщего закона сохранения. Недостатком формулировки Ломоносова является отсутствие точной количественной меры силы. Во времена Ломоносова спорили о двух мерах механического движения: mv и mv2, еще только вырабатывались понятия калориметрии, в области электричества и магнетизма вообще еще не было количественных характеристик, и поэтому отсутствие количественной формулировки сохранения силы у Ломоносова вполне естественно. Ломоносов сделал важный шаг, введя для количественной характеристики химических реакций весы. В отчете о своих работах за 1756 г. он записывает: «Между разными химическими опытами, которых журнал на 13 листах, деланы опыты в заплавленных накрепко стеклянных сосудах, чтобы исследовать: прибывает ли вес металлов от чистого жару. Оными опытами нашлось, что славного Роберта Бойля мнение ложно, ибо без пропущения внешнего воздуха вес сожженного металла остается в одной мере». Все замечательно в этой сухой фразе отчета: первая в мире опытная проверка закона сохранения веса при химической реакции, опытное опровержение ошибочного мнения крупного авторитета и первый значительный шаг к теории горения Лавуазье. Ломоносов здесь показал, так же как и в своей теории теплоты, конкретное применение всеобщего закона сохранения. В истории закона сохранения энергии и массы Ломоносову по праву принадлежит первое место. Ломоносов был пионером во многих областях науки. Он открыл атмосферу Венеры и нарисовал яркую картину огненных валов и вихрей на Солнце. Он высказал правильную догадку о вертикальных течениях в атмосфере, правильно указал на электрическую природу северных сияний и оценил их высоту. Он пытался разработать эфирную теорию электрических явлений и думал о связи электричества и света, которую хотел обнаружить экспериментально. В эпоху господства корпускулярной теории света он открыто поддержал волновую теорию «Гугения» (Гюйгенса) и разработал оригинальную теорию цветов. Это был яркий и независимый ум, взгляды которого во многом опередили эпоху. Ему не удалось полностью реализовать свои обширные научные замыслы, но того, что он сделал, оказалось достаточно, чтобы обеспечить ему почетное место в пантеоне науки. Механика XIII в. «Начала» Ньютона, как уже было сказано, были изложены тяжелым геометрическим языком. Доказательства механических предложений были громоздки и сложны. В XVIII в. в механику проникают методы дифференциального и интегрального исчисления, которые не решился применять в своем основном труде один из создателей этих методов. В превращении механики в аналитическую механику сыграла существенную роль плеяда блестящих математиков и механиков XVIII в., в особенности петербургский академик Леонард Эйлер и парижский академик Жозеф Луи Лагранж (1736—1813). Отметим, что и Эйлер и Л агранж в разное время работали в Берлинской Академии наук, куда Лагранж был избран в 1759 г. по представлению Эйлера. После отъезда Эйлера в Россию Лагранж переехал в Берлин, заняв пост Эйлера. Лагранж вернулся во францию спустя пять лет после смерти Эйлера, накануне Великой французской революции. «Механика» Эйлера вышла в Петербурге в 1736 г. в двух больших томах. Второе его основное сочинение по механике, которое рассматривается как третий том «Механики», вышло в 1765 г. в Ростоке и Грейфсфальде под названием «Теория движения твердых тел». Мы знаем, что Ньютон озаглавил свое сочинение «Началами натуральной философии», механикой в его время считалось учение о равновесии простых машин. Эйлер же впервые назвал механику наукой о движении, и полный перевод названия его труда в 1736 г. гласит: «Механика, или Наука о движении, изложенная аналитически». В предисловии к этому труду Эйлер указывал, что под механикой обычно понимают науку о равновесии сил, и предлагал дать этой науке название «статика», а «науке о движении придать имя механики». И. Бернулли возражал против такого словоупотребления, предлагая для науки о движении сохранить термин, введенный Лейбницем,— «динамика». Эйлер в предисловии ссылается на сочинения своих предшественников: французского математика и механика Вариньона (1654—1722), сочинение которого «Новая механика или статика» вышло в 1725 г. после смерти автора; Христиана Вольфа (1679—1754), в сочинении которого «Начала всех математических наук» (1710) в разделе «Элементы механики» рассмотрены вместе и статика и механика; и наконец, швейцарского математика и петербургского академика Германа (1678—1733), сочинение которого «форономия, или О силах и движениях твердых и жидких тел» было опубликовано в 1716 г. Он называет также и «Начала» Ньютона, благодаря которым «наука о движении получила наибольшее развитие». Эйлер отмечает, что «форономия» является единственным известным ему сочинением, в котором учение о движении было разобрано «совершенно отдельно». Но он указывает, что работы Германа и Ньютона изложены «по обычаю древних при помощи синтетических геометрических доказательств» без применения анализа, «благодаря которому только и можно достигнуть полного понимания этих вещей». Эйлер сознается, что после изучения «форономии» и «Начал» он, как ему казалось, «достаточно ясно понял решение многих задач, однако задач, чуть отступающих от них, ...уже решить не мог». Тогда он попытался «выделить анализ из этого синтетического метода и те же предложения для собственной пользы проработать аналитически». Эйлер отмечает, что благодаря этому он «значительно лучше понял суть вопроса». «Затем таким же образом я исследовал и другие работы, относящиеся к этой науке, разбросанные по многим местам, и лично для себя я изложил их планомерным и однообразным методом и привел их в удобный порядок. При этих занятиях я не только встретился с целым рядом вопросов, ранее совершенно незатронутых, которые я удачно разрешил, но и нашел много новых методов, благодаря которым не только механика, но и сам анализ, по-видимому, в значительной степени обогатился. Таким образом и возникло это сочинение о движении, в котором я изложил аналитическим методом и в удобном порядке как то, что я нашел у другие в их работах о движении, так и то, что я получил в результате своих размышлений». Так откровенно и просто Эйлер рассказал историю создания своей «Механики» и вместе с тем показал путь перехода от громоздких, геометрических методов к изящным, аналитическим. Говоря о конкретном содержании «Механики» Эйлера, следует отметить, что она появилась в те годы, когда на континенте Европы начали распространяться идеи Ньютона и борьба картезианцев и ньютонианцев была в самом разгаре За пять лет до выхода эйлеровской «Механики» Вольтер смог четко отличить географические границы ньюто-нианства и картезианства: Лондон был центром ньютонианства, а Париж — картезианства. Имея в виду этот факт, Вольтер писал в «философских письмах» (1731): «Когда француз приезжает в Лондон, то находит здесь большую разницу как в философии, так и во всем другом. В Париже, из которого он приехал, думают, что мир наполнен материей, здесь же ему говорят, что он совершенно пуст; в Париже вы видите, что вся вселенная состоит из вихрей тонкой материи, в Лондоне же вы не видите ничего подобного; во франции давление Луны производит приливы и отливы моря, в Англии же говорят, что это само море тяготеет к Луне, так что когда парижане получают от Луны прилив, то лондонские джентльмены думают, что они должны иметь отлив... У вас картезианцы говорят, что все совершается вследствие давления, и этого мы не понимаем; здесь же нью-тонианцы говорят, что все совершается вследствие притяжения, которое мы не лучше понимаем. В Париже вы воображаете, что Земля у полюсов несколько удлинена, как яйцо, тогда как в Лондоне представляют ее сплюснутой, как дыня». Воззрения картезианцев, казалось, подтверждались измерениями французских астрономов: Пикара (1620— 1682) и Ж. Кассини (1677-1756). Дискуссии о форме Земли, о системе мира Декарта и Ньютона достигли широкого размаха. Только в 1733 г. вышло шесть работ, посвященных вопросу о фигуре Земли. В 1735 г. Парижская академия наук организовала экспедицию в Перу для измерения дуги меридиана в экваториальной зоне. Летом 1736 г. академия послала экспедицию в Лапландию под руководством академика Пьера Мопертюи (1698—1759). В состав этой экспедиции входил и молодой математик Алексис Клод Клеро (1713—1765). Экспедиция вернулась через 15 месяцев, в сентябре 1737 г., обеспечив победу теории Ньютона. Вышедший в 1743 г. классический труд Клеро «Теория фигуры Земли», где автор поставил труднейшую проблему определения фигуры равновесия вращающейся жидкости, был развитием теории Ньютона. Клеро предположил, что масса планеты первоначально была жидкой, ее частицы взаимодействовали друг с другом по ньютоновскому закону тяготения и вся масса медленно вращалась вокруг неподвижной оси. Полученные результаты имели фундаментальное значение для высшей геодезии, а сама теория Клеро получила дальнейшее развитие в трудах выдающихся математиков, начиная от современников Клеро и кончая классическими исследованиями выдающегося русского математика и механика А.М.Ляпунова. Важным вкладом в развитие теории Ньютона были еще две работы Клеро, представленные им на премию, объявленную Петербургской Академией наук. Первая, премированная Петербургской Академией наук в 1751 г., работа Клеро называлась «Теория движения Луны, выведенная единственно из начала притяжения, обратно пропорционального квадратам расстояния». Труд Клеро был напечатан в Петербурге в 1752 г. Весьма замечательна вторая работа Клеро, получившая премию Петербургской Академии наук в 1762 г. Эта работа была посвящена анализу движения кометы Галлея. Галлей предсказал ее возвращение в 1758 г., однако в этот год комета не появилась. Клеро предпринял новый расчет времени возвращения кометы, учитывая возмущающее действие на нее масс Юпитера и Сатурна, и предсказал ее появление весной 1759 г., допустив ошибку всего в 19 дней. «Исполнившееся предсказание Клеро, — говорил французский академик Араго,— произвело на общество более действия, нежели все хитрые доказательства философа Бейля». А Пьер Бейль (1647— 1706), автор «Исторического и критического словаря», оказал бесспорно большое влияние на умы просветителей XVIII в. К.Маркс называл его отцом французского просвещения. Борьба за теорию Ньютона развертывалась на самых разнообразных участках науки и жизни. Теория проверялась в экспедициях, в астрономических наблюдениях, в вычислениях математиков, обсуждалась в философских и научных дискуссиях, излагалась в учебниках и монографиях. «Механика» Эйлера и была первым систематическим курсом ньютоновской механики. Ее страницы еще отражали дискуссии нью-тонианцев и картезианцев. Шла ли речь о пустом абсолютном пространстве Ньютона или о материальной протяженности Декарта, о силах, существующих «сами по себе», или только о взаимодействующих реальных телах— обо всем этом картезианцы и ньюто-нианцы имели свои точки зрения. Эйлеру необходимо было присоединиться к той или другой. Для математических расчетов точка зрения ньюто-нианцев была более подходящей, и Эйлер ее принял. Так, определив движение как «перемещение тела из того места, которое оно занимало, в другое место», Эйлер определил понятие места следующим образом: «Место есть часть неизмеримого или бесконечного пространства, в котором находится весь мир. Принятое в этом смысле место обычно называют абсолютным...» Это определение совершенно в духе ньютоновского абсолютного пространства, «вместилища» всего мира. Но Эйлер подчеркивает, что такое пространство вводится лишь для удобства математического описания. Он говорит: «То, что мы говорили здесь о безграничном и неизмеримом пространстве, должно рассматриваться как чисто математическое выражение... Ведь мы не утверждаем, что есть подобного рода бесконечное пространство... мы требуем только одного, чтобы тот, кто хочет исследовать вопрос об абсолютном движении и абсолютном покое, представил себе такое пространство и отсюда уже судил о состоянии покоя или движения тел». Итак, Эйлер рассматривает ньютоновское абсолютное пространство как удобную математическую абстракцию, полезную для описания механического движения тел. Из других его трудов, в частности из известной научно-популярной книги «Письма к немецкой принцессе», видно, что в его физических воззрениях картезианская концепция непрерывной материальной среды занимала важное место. Эйлер следует Ньютону и в определении основных понятий динамики — силы и массы. «Сила есть то усилие, которое переводит тело из состояния покоя в состояние движения или видоизменяет его движение». Отсюда в качестве следствия получается закон инерции: «Всякое тело, предоставленное самому себе, или пребывает в покое, или движется равномерно и прямолинейно». Эйлер заранее предупреждает читателя, что он под словами «движение» и «покой» всегда подразумевает абсолютные движение и покой. Таким образом, в приведенной формулировке закона инерции следует иметь в виду движение и покой, отнесенные к абсолютному пространству. Эйлер неоднократно обращался к вопросу об источнике сил и считал, что таким источником является движение непроницаемых инертных тел. Основой динамики Эйлера служит теорема: «Сила q на точку b имеет то же действие, какое сила р имеет на точку а, если q/p=b/a «Это предложение, — указывает далее Эйлер, — заключает в себе основы для измерения силы инерции, так как на нем основывается все учение о том, как нужно учитывать материю или массу тел в механике. Следует обращать внимание на число точек, составляющих тело, которое должно быть приведено в движение, и масса тела должна быть принята пропорциональной этому числу. Эти точки надо считать равными между собой, но не так, что они равно малы, но так, что на них одна и та же сила производит равные действия. Если мы представим себе, что вся материя мира разделена на подобного рода равные точки или элементы, то количество материи по необходимости надо будет измерять числом точек, из которых оно составлено. В следующем предложении я покажу, что сила инерции пропорциональна этому числу точек или количеству материи». Действительно, несколько ниже Эйлер формулирует предложение: «Силы инерции каждого тела пропорциональны количеству материи, из которой оно со стоит». Эйлер раскрывает знаменитое ньютоновское определение массы, вскрывает его атомистическую сущность и, подобно Ньютону, поясняет далее, что масса может быть измерена пропорциональным ей весом. Когда Эйлер в приведенном выше основном предложении о пропорциональности сил массам употребляет выражение «точка b», «точка а», то это означает: «точка массы b», «точка массы а».(«Точка массы а», очевидно, тело малых размеров, составленное из простых точек ) Само же предложение означает, что действия сил одинаковы, если силы пропорциональны массам. В современных обозначениях предложение Эйлера записывают так: F1/F2 = m1/m2 = a где а - одинаковое действие силы на тело, т. е. ускорение. Отсюда: F1/m1 = a, F2/ m2 = a, или вообще: F = ma. В своей «Механике» Эйлер записывает основное уравнение динамики для прямолинейного движения в следующем виде: dc=npdt/A где dc - дифференциал скорости, р -сила, А - масса, п - коэффициент пропорциональности. Подчеркнем, что Эйлер знал векторный характер силы и принимал за ее направление ту прямую, «по которой она стремится двигать тело». В «Теории движения твердых тел» Эйлер выписывает уравнения движения тела, разлагая это движение на три прямолинейные составляющие по осям. Они в обозначениях Эйлера имеют вид: где р, q, r - компоненты действующей силы по осям координат, А — масса точки, ? — коэффициент пропорциональности, определяемый выбором единиц. Таким образом, Эйлер переформулировал основные понятия ньютоновской механики, придав им более ясную форму, сохранив, однако, сущность ньютоновских определений; выдвинул на центральное место второй, закон, сделав его стержнем всей механики и придав ему аналитическую форму. С помощью этого закона Эйлер в «Механике» рассматривает различные случаи движения свободной и несвободной точки. В «Теории движения твердого тела» Эйлер развил механику вращательного движения, введя такие фундаментальные понятия, как главные оси, проходящие через центр инерции, по отношению к которым момент инерции имеет экстремальное значение. Свободную ось вращения Эйлер определяет как ось, которая не испытывает никакого силового воздействия при вращении тела вокруг нее. Еще в 1758 г. Эйлер написал уравнения вращательного движения твердого тела, отнесенные к главным осям, в следующем виде: где р, q, r - угловые скорости вращения относительно трех главных осей, жестко связанных с телом; А, В, С - главные моменты инерции; L, М, N - моменты сил, приложенных к телу, относительно тех же главных осей. Как видим, Эйлер внес существенный вклад в развитие механики. Написанные им уравнения до cего времени «работают» в современных курсах. В XVIII в. происходило не только преобразование методов ньютоновской механики. Этот век отмечен поисками общих принципов механики, эквивалентных законам Ньютона, или даже более общих, чем эти принципы. В результате этих поисков были открыты принципы возможных перемещений в статике, принцип Даламбера и принцип наименьшего действия Мопер-тюи — Эйлера в динамике. Лагранж в своем труде «Аналитическая механика», излагая историю развития принципов статики, относит первые формулировки соотношений между силами, действующими в простых механизмах, и проходимыми путями к Гвидо убальдо и Галилею. Лагранж считает, что «древние, по-видимому, не знали этого закона». Однако у Герона Александрийского встречается «золотое правило механики» в виде утверждения: «Что выигрывается в силе, то теряется в скорости». Многие историки науки считают, что это правило было известно еще Аристотелю. Эмпирически это правило, несомненно, было знакомо людям, имеющим дело с простыми механизмами, очень давно. Принцип возможных перемещений, который Лагранж называет принципом виртуальных скоростей, был сформулирован И.Бернулли в 1717 г. в письме к Вариньону и опубликован в «Новой механике» в 1725 г. Лагранж формулирует этот принцип следующим образом: «Если какая-либо система любого числа тел или точек, на каждую из которых действуют любые силы, находится в равновесии и если этой системе сообщить любое малое движение, в результате которого каждая точка пройдет бесконечно малый путь, представляющий ее виртуальную скорость, то сумма сил, помноженных каждая соответственно на путь, проходимый по направлению силы точкой, к которой она приложена, будет всегда равна нулю, если малые пути, проходимые в направлении сил, считать положительными, а проходимые в противоположном направлении считать отрицательными». Лагранж доказывал этот принцип, моделируя систему сил при помощи полиспастов и сводя действие этой системы к подъему или опусканию груза. Равновесие системы сил будет достигнуто тогда, когда при любом бесконечно малом перемещении точек системы груз не опускается. Лагранж указывал, что принцип виртуальных скоростей «дал повод для появления другого принципа, предложенного Мопертюи в 1740 г.». История принципа П. Мопертюи также восходит к Герону, к утверждению о кратчайшем времени распространения света, которым Герои обосновал закон отражения. Ферма применил этот принцип к преломлению света и вывел закон преломления, исходя из постулата: «Природа действует наиболее легкими и доступными путями». Свой вывод он изложил в письме к де ла Шамбру от 1 января 1662 г. Иоганн Бернулли (1667—1748) сопоставил принцип ферма с предложенной им в 1696 г. вариационной механической задачей о линии быстрейшего ската тяжелой точки в поле тяжести (брахистохроне). Эту задачу Бернулли сформулировал так: «В вертикальной плоскости даны две точки Л и В. Определить путь АМВ, спускаясь по которому под влиянием собственной тяжести, тело М, начав двигаться из точки А, дойдет до другой точки В в кратчайшее время» И в принципе ферма и в задаче о брахистохроне речь идет об отыскании минимального значения интеграла: «...Мною, — писал И. Бернулли, — открыто удивительное совпадение между кривизной луча света в непрерывно меняющейся среде и нашей брахистохронной кривой». Так впервые была подмечена оптико-механическая аналогия, сыгравшая важную роль в истории физики. Задача о брахистохроне явилась также началом разработки нового раздела математики — вариационного исчисления. В развитии этого раздела математики основополагающую роль сыграл Эйлер, издавший в 1744 г. книгу «Метод нахождения кривых линий, обладающих свойствами максимума либо минимума, или решение изопери-метрической задачи, взятой в самом широком смысле». Эйлер впервые применил термин «вариационное исчисление». Дальнейшее развитие вариационное исчисление получило в работах Лагранжа, который ввел символ варьирования 5 . Лагранж сообщил основные идеи своего метода в письме к Эйлеру еще в 1755 г. и опубликовал основополагающую статью по вариационному исчислению в 1762 г. 20 февраля 1740 г. П. Мопертюи прочитал в Парижской Академии Статью «Закон покоя». Именно об этой статье упоминал Лагранж, излагая историю принципа возможных перемещений. Мопертюи действительно ставил своей целью в этой статье найти принцип равновесия системы тел и формулировал его как экстремальный принцип для некоторой величины, которую он называл «суммой сил покоя». Через четыре года после этого Мопертюи выступил со статьей «Согласование различных законов природы», в которой утверждал, что законы оптики являются следствием «метафизического закона», заключающегося в том, что «природа, производя свои действия, всегда пользуется наиболее простыми средствами» и что принцип ферма является принципом наименьшего действия. Свет, по мнению Мопертюи, «выбирает путь», «для которого количество действия будет наименьшим». Мопертюи при этом поясняет, что он понимает под «количеством действия». «Это действие, — говорит он, — зависит от скорости, имеющейся у тела, и от пространства, пробегаемого последним, но оно не является ни скоростью, ни пространством, взятыми в отдельности. Количество действия тем больше, чем больше скорость тела и чем длиннее путь, пробегаемый телом; оно пропорционально сумме произведений отрезков на скорость, с которой тело проходит каждый из них». Принцип ферма Мопертюи выражает в виде утверждения: ?(mvs) = min, а не в виде: ?(ds/v)=min. В своей книге «Метод нахождения кривых линий» Эйлер публикует статью «Об определении движения брошенных тел в не сопротивляющейся среде методом максимумов и минимумов». «Так как все явления природы, — говорит Эйлер в этой статье,— следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошенные тела, когда на них действуют какие-нибудь силы, имеет место какое-то свойство максимума или минимума». Далее Эйлер определяет это свойство конкретно. Обозначив массу движущегося тела через М, его скорость через , пройденный путь через s, он пишет: «Теперь я утверждаю, что линия, описываемая телом, будет такова, что среди всех других линий, содержащихся между теми же пределами, у нее будет минимум или, так как М постоянно, . Поскольку , то «так что для кривой, описываемой брошенным телом, сумма всех живых сил, находящихся в теле, в отдельные моменты времени будет наименьшей». «Таким образом, —добавляет Эйлер, откликая сь на спор о двух мерах движения,— ни те, кто полагает, что силы следует оценивать по самим скоростям, ни те, кто — по квадратам скоростей, не найдут здесь ничего неприемлемого». Спор о двух мерах движения, как известно, был разрешен Даламбером(Математик и философ Жан Лерон за год до выхода книги Эйлера. «Трактат по динамике» Даламбера вышел в 1743 г. Даламбер строит динамику на трех принципах: принципе силы инерции, принципе сложения движений и принципе равновесия. «Силой инерции, — говорит Даламбер, — я вместе с Ньютоном называю свойство тел сохранять то состояние, в котором они находятся».) Действие ускоряющей силы ? , по Даламберу, пропорционально приращению скорости: Но u=de/dt, где е —пройденный путь, отсюда: Таким образом в «Динамике» Даламбера фигурирует то же уравнение движения, что и в «Механике» Эйлера. Второй принцип динамики Даламбера—это принцип суперпозиции движений; параллелограмм скоростей и сил. На основе этого принципа Даламбер решает задачи статики. Третий принцип, который кладет Даламбер в основу динамики, известен ныне под названием «принцип Даламбера». Его оригинальная формулировка очень громоздка и трудно понимаема, мы ее приводить не будем. Лагранж в своей «Аналитической динамике» дает такую формулировку принципа Даламбера: «Если нескольким телам сообщить движения, которые они вынуждены изменить вследствие наличия взаимодействия между ними, то ясно, что эти движения можно рассматривать как составленные из тех движений, которые тела фактически получают, и из других движений, которые уничтожаются ; отсюда следует, что эти последние должны быть такими, что если бы тела находились исключительно под их действием, то они бы взаимно друг друга уравновесили». Приведем более современную формулировку принципа Даламбера, как она была дана знаменитым русским механиком Н.Е.Жуковским в его «Курсе теоретической механики»: «В своем «Трактате динамики» Далам-бер установил общие начала, которые позволяют задачу о движении свести к вопросам о равновесии и найти связь между действующими силами, ускорениями и силами давления, натяжения и т. д.— связь, которая имеет место при рассматриваемом движении. Это достигается введением в систему действующих сил некоторых фиктивных сил, именно сил инерции. Начало Даламбера может быть сформулировано таким образом. Если в какой-нибудь момент времени остановить движущуюся систему и прибавить к ней, кроме сил, ее движущих, еще все силы, инерции, соответствующие данному моменту времени, то будет иметь место равновесие; при этом все силы давления, натяжения и т. д., которые развиваются между частями системы при таком равновесии, будут действительные силы давления, натяжения и т. д. при движении системы в рассматриваемый момент времени». Таким образом, к 1744 г. механика обогатилась двумя важными принципами; принципом Даламбера и принципом наименьшего действия Мопертюи —Эйлера. Основываясь на этих принципах, Лагранж построил законченную систему аналитической механики. Он окончательно порвал с геометрическими методами Ньютона и с гордостью заявлял, что в его «Аналитической механике» совершенно отсутствуют какие бы то ни было чертежи. «Я поставил себе целью,— пишет Лагранж в предисловии к своему труду,— свести теорию механики и методы решения связанных с нею задач к общим формулам, простое развитие которых дает все уравнения, необходимые для решения каждой задачи». Жозеф Луи Лагранж родился 25 января 1736 г. в Турине. Он рано начал интересоваться математическими науками и уже в 18 лет получил самостоятельные результаты в области дифференциального, интегрального и вариационного исчислений. В 19 лет он стал профессором артиллерийской школы в Турине. Здесь он организовал ученое общество, развившееся в известную Туринскую академию, в печатном органе которой Лагранж публиковал свои мемуары, привлекшие внимание тогдашних математиков. Через пять лет, в 1759 г., двадцатитрехлетний Лагранж по представлению Эйлера был избран членом Берлинской Академии наук. В 1766 г. он в связи с отъездом Эйлера заменял его на посту президента физико-математического класса Берлинской Академии наук и оставался на этом посту до 1787 г. В 1788 г. накануне Великой французской революции Лагранж переезжает в Париж, В этом же году выходит его труд «Аналитическая механика», изданный в Париже на французском языке. После революции Лагранж был назначен председателем Комиссии по установлению метрической системы мер. С момента организации Нормальной и Политехнической школ Лагранж вел в них педагогическую работу и немало способствовал укреплению авторитета Политехнической школы как ведущего научного центра математических наук. Умер Лагранж 10 апреля 1813 г. «Аналитическая механика» Лагранжа состоит из двух основных разделов: статики и динамики. Каждому из этих разделов предпосылается вводная глава, содержащая анализ общих принципов статики и динамики. Лагранж определяет статику как науку о равновесии сил и дает определение силы как «любой причины», «которая сообщает или стремится сообщить движение телам». Лагранж указывает, что статика основана на трех принципах; принципе рычага, принципе сложения сил и принципе виртуальных скоростей Затем он переходит к изложению истории развития этих принципов. Охарактеризовав принцип рычага Архимеда, он кратко показывает его развитие Стевином, Галилеем и Гюйгенсом. Лагранж считает доказательство Гюйгенса остроумным, но недостаточным и дает свое доказательство. Равновесие рычага сводится к принципу моментов, причем под моментом «понимают произведение силы на плечо, на которое она действует». В кратком историческом обзоре Лагранж показывает, как развивается и уточняется научная идея. Его собственные доказательства появляются как итог этого исторического развития. Таково его знаменитое доказательство принципа виртуальных скоростей, т. е. принципа возможных перемещений, история которого значительно короче, чем история принципа рычага. Исторический подход Лагранжа к механике очень интересен и ценен. Лагранж не только разработал аналитические методы классической механики, но и явился первым историком механики. Следует отметить, что в XVIII и первой половине XIX в. исторический подход к научным проблемам был весьма распространен; история помогала глубже осознавать рождающиеся идеи, уточнять и совершенствовать их. Так было в механике, так было в электричестве и оптике. В главе «О различных принципах динамики» Лагранж определяет динамику как науку «об ускоряющих и замедляющих силах и о переменных движениях, которые они должны вызвать». В основу динамики Лагранж кладет принцип наименьшего действия, который формулирует следующим образом: «При движении любой системы тел, находящихся под действием взаимных сил притяжения, или сил, направленных к неподвижным центрам и пропорциональных каким-либо функциям расстояний, кривые, описываемые различными телами, а равно их скорости необходимо таковы, что сумма произведений отдельных масс на интеграл скорости, умноженный на элемент кривой, является максимумом или минимумом— при условии, что первые и последние точки каждой кривой рассматриваются как заданные, так что вариации координат, соответствующих этим точкам, равны нулю». Используя принцип наименьшего действия, Лагранж получает для описания движения любой системы материальных точек общую формулу: где S - знак суммы; m - масса каждого из тел (точек) системы; х, у, z - координаты тела (точки); Р, Q, R, ...— заданные ускоряющие силы, действующие на единицу массы по направлению соответствующих центров; р, q, r,... — расстояния тел (точек) от этих центров; ?р, ?q, ?r, ... — вариации этих расстояний. Из этой общей формулы Лагранж выводит законы и уравнения движения системы. Закон движения центра тяжести он формулирует так: «Движение центра тяжести системы свободных тел, расположенных одно по отношению к другому совершенно произвольным образом, всегда таково, как если бы все тела были сосредоточены в одной точке и если бы в то же время каждое из них находилось под действием тех же ускоряющих сил, под влиянием которых оно находится в своем действительном состоянии». Аналитически эта теорема записывается Лагранжем в следующем виде: где x', y', z' — координаты центра тяжести. Теорему площадей для центральных сил Лагранж записывает в следующем виде: где А, В, С — произвольные постоянные. Принцип сохранения живых сил Лагранж выражает в виде: где H обозначает произвольную постоянную, равную значению левой части уравнения в заданное мгновение; П — функция, дифференциал которой равен: dП = Pdp + Qdq + Rdr+..., т. е., по современным представлениям, равен элементарной работе движущих сил; однако Лагранж термина «работа» не знал, равно как и термина «энергия ». Написанную выше формулу, выражающую закон сохранения энергии для консервативных сил, Лагранж называет принципом сохранения живых сил. Далее Лагранж выводит дифференциальные уравнения движения системы. Мы их выпишем в более привычной форме. Если уравнения связей системы: ? 1 = О, ? 2 = О, ...?к = 0, то уравнения Лагранжа первого рода имеют вид: Лагранж делает следующий важный шаг: он вводит новые переменные, «пользование которыми может максимально облегчить интегрирование». Эти «обобщенные координаты» соответствуют числу «степеней свободы», т. е. числу тех независимых параметров, которые полностью характеризуют систему. Применяя метод наименьшего действия, Л агранж получает уравнения: Рис. 23. Воздушный термометр Амонтона Число уравнений «в точности равно числу переменных, Ф, ..., от которых зависит положение системы в каждое мгновение». Сейчас обобщенные координаты обозначают символом, потенциальную энергию — символом U, сохраняя для кинетической энергии обозначение Лагранжа Т. Тогда, введя функцию Т - U, которую в честь Лагранжа обозначают L, его уравнения записывают так: В современной теоретической физике уравнения Лагранжа приобрели огромное значение, далеко выходящее за пределы механики. Они применяются в термодинамике, электродинамике, атомной физике. Таким образом, Лагранж создал мощный метод, позволяющий решать большой круг задач. Ирландский математик, механик и астроном У.Р.Гамильтон, оценивая вклад, внесенный Лагранжем в развитие механики после Галилея и Ньютона, писал: «Из числа последователей этих блестящих ученых Лагранж, пожалуй, больше, чем какой-либо другой аналитик, сделал для того, чтобы расширить и придать стройность подобным дедуктивным исследованиям, доказав, что самые разнообразные следствия, относящиеся к движению системы тел, могут быть выведены из одной основной формулы. При этом красота метода настолько соответствует достоинству результата, что эта великая работа превращается в своего рода математическую поэму». Этой поэмой завершился плодотворный период разработки основ теоретической механики. Молекулярная физика и теплота в XVIII столетии Если механика в XVIII столетии становится зрелой, вполне определившейся областью естествознания, то наука о теплоте делает по существу только первые шаги. Конечно, новый подход к изучению тепловых явлений наметился еще в XVII в. Термоскоп Галилея и последовавшие за ним термометры флорентийских академиков, Герике, Ньютона подготовили почву, на которой выросла уже в первой четверти нового столетия термометрия. Термометры Фаренгейта, Делиля, Ломоносова, Реомюра и Цельсия, отличаясь друг от друга конструктивными особенностями, вместе с тем определили тип термометра с двумя постоянными точками, принятый и в настоящее время. Еще в 1703 г. парижский академик Амонтон (1663-1705) сконструировал газовый термометр, в котором температура определялась с помощью манометрической трубки, присоединенной к газовому резервуару постоянного объема. Интересный в теоретическом отношении прибор, прототип современных водородных термометров, был неудобен для практических целей. Данцигский (Гданьский) стеклодув Фаренгейт (1686—1736) с 1709 г. изготовлял спиртовые термометры с постоянными точками. С 1714 г. он начал изготовлять ртутные термометры. Точку замерзания воды Фаренгейт принимал за 32°, точку кипения воды — за 212°. За нуль Фаренгейт принимал точку замерзания смеси воды, льда и нашатыря или поваренной соли. Точку кипения воды он назвал только в 1724 г. в печатной публикации. Пользовался ли он ею раньше, неизвестно. Французский зоолог и металлург Реомюр (1683—1757) предложил термометр с постоянной нулевой точкой, за которую он принял температуру замерзания воды. Пользуясь в качестве термометрического тела 80-процентным раствором спирта, а в окончательном варианте ртутью, он принял в качестве второй постоянной точки точку кипения воды, обозначив ее числом 80. Свой термометр Реомюр описывал в статьях, опубликованных в журнале Парижской Академии наук в 1730,1731 гг. Проверку термометра Реомюра проводил шведский астроном Цельсий (1701—1744), описавший свои опыты в 1742 г. «Эти опыты, —писал он, —я повторял два года, во все зимние месяцы, при различной погоде и разнообразных изменениях состояния барометра и всегда находил точно такую же точку на термометре. Я помещал термометр не только в тающий лед, но также при сильных холодах приносил снег в мою комнату на огонь до тех пор, пока он не начинал таять. Я помещал также котел с тающим снегом вместе с термометром в топящуюся печь и всегда находил, что термометр показывал одну и ту же точку, если только снег лежал плотно вокруг шарика термометра». Тщательно проверив постоянство точки плавления льда, Цельсий исследовал точку кипения воды и установил, что она зависит от давления. В итоге исследований появился новый термометр, известный ныне как термометр Цельсия. Точку плавления льда Цельсий принял за 100, точку кипения воды при давлении 25 дюймов 3 линии ртутного столба—за 0. Известный шведский ботаник Карл Линней (1707—1788) пользовался термометром с переставленными значениями постоянных точек. О означал температуру плавления льда, 100 — температуру кипения воды. Таким образом, современная шкала Цельсия по существу является шкалой Линнея. В Петербургской Академии наук академик Делиль предложил шкалу, в которой точка плавления льда принималась за 150, а точка кипения воды — за 0. Академик П. С. Паллас в своих экспедициях 1768—1774 гг. по Уралу и Сибири пользовался термометром Дели-ля. М.В.Ломоносов применял в исследованиях сконструированный им термометр со шкалой, обратной делилев-ской. Термометры использовались прежде всего для метеорологических и геофизических целей. Ломоносов, открывший в атмосфере существование вертикальных течений, изучая зависимость плотности слоев атмосферы от температуры, приводит данные, из которых можно определить коэффициент объемного расширения воздуха, равный, по этим данным, приблизительно ]/367. Ломоносов горячо защищал приоритет петербургского академика Брауна в открытии точки замерзания ртути, который 14 декабря 1759 г. впервые заморозил ртуть с помощью охлаждающих смесей. Это была наинизшая температура, достигнутая к тому времени. Наивысшие температуры (без количественных оценок) были получены в 1772 г. комиссией Парижской Академии наук под руководством знаменитого химика Лавуазье. Высокие температуры получали с помощью специально изготовленной линзы. Линзу собирали из двух вогнуто-выпуклых чечевиц, пространство между которыми заливали спиртом. В линзу диаметром 120 см заливали около 130 л спирта, ее толщина достигала в центре 16 см. фокусируя солнечные лучи, удалось расплавить цинк, золото, сжечь алмаз. Как в опытах Брауна—Ломоносова, где «холодильником» был зимний воздух, так и в опытах Лавуазье источником высоких температур служила естественная «печка» — Солнце. Развитие термометрии было первым научным и практическим использованием теплового расширения тел. Естественно, что само явление теплового расширения начало изучаться не только качественно, но и количественно Первые точные измерения теплового расширения твердых тел были выполнены Лавуазье и Лапласом в 1782 г. Их метод долгое время описывался в курсах физики, начиная с курса Био, 1819 г., и кончая курсом физики О. Д.Хвольсона, 1923 г. Полосу испытуемого тела помещали сначала в тающий лед, а затем в кипящую воду. Были получены данные для стекла различных сортов, стали и железа, а также для разных сортов золота, меди, латуни, серебра, олова, свинца Ученые установили, что в зависимости от способа приготовления металла результаты получаются различными. Полоса из незакаленной стали увеличивается на 0,001079 первоначального значения длины при нагревании на 100°, а из закаленной стали — на 0,001239. Для кованого железа было получено значение 0,001220, для круглого тянутого 0,001235. Эти данные дают представление о точности метода. Итак, уже в первой половине XVIII столетия были созданы термометры и начались количественные тепловые измерения, доведенные до высокой степени точности в теплофизических опытах Лапласа и Лавуазье. Однако основные количественные понятия теплофизики выкристаллизовались не сразу. В трудах физиков того времени существовала немалая путаница в таких понятиях, как «количество теплоты», «степень теплоты», «градус теплоты». На необходимость различать понятия температуры и количества тепла указал в 1755 г. И.Г.Ламберт (1728—1777). Однако его указание не было оценено современниками, и выработка правильных понятий проходила медленно. Первые подступы к калориметрии содержатся в трудах петербургских академиков Г. В. Крафта и Г. В.Рихмана (1711—1753). В статье Крафта «Различные опыты с теплом и холодом», представленной Конференции академии в 1744 г. и опубликованной в 1751 г., речь идет о задаче определения температуры смеси двух порций жидкости, взятых при разных температурах. Эта задача в учебниках нередко именовалась «задачей Рихмана», хотя Рихман решал более общую и более сложную задачу, чем Крафт. Крафт для решения задачи дал неверную эмпирическую формулу. Совсем иной подход к решению задачи мы находим у Рихмана. В статье «Размышления о количестве теплоты, которое должно получаться при смешении жидкостей, имеющих определенные градусы теплоты», опубликованной в 1750 г., Рихман ставит задачу определения температуры смеси нескольких (а не двух, как у Крафта) жидкостей и решает ее, исходя из принципа теплового баланса. «Предположим, — говорит Рихман, — что масса жидкости равна а; теплота, распределенная в этой массе, равна т; другая масса, в которой должна быть распределена та же самая теплота т, что и в массе а, пусть будет равна а+b. Тогда получающаяся теплота равна am/(a+b). Здесь Рихман под «теплотой» понимает температуру, но сформулированный им принцип, что «одна и та же теплота бывает обратно пропорциональна массам, по которым она распределяется», является чисто калориметрическим. «Таким образом, — пишет далее Рихман, — теплота массы а, равная т, и теплота массы Ъ, равная п, равномерно распределяются по массе а + b, и теплота в этой массе, т. е. в смеси из a и b, должна равняться сумме теплот т + п, распределенных в массе а+b, или равна (ma+nb)/(a+b) . Вот эта формула и фигурировала в учебниках как «формула Рихмана». «Чтобы получить более общую формулу, — продолжает Рихман, — по которой возможно было бы определять градус теплоты при смешении 3, 4, 5 и т. д. масс одной и той же жидкости, имеющих различные градусы теплоты, я назвал эти массы а, b, с, d, e и т. д., а соответствующие теплоты — т, п, о, р, q и т. д. Совершенно аналогичным образом я предположил, что каждая из них распределяется по совокупности всех масс». В результате «теплота после смешивания всех теплых масс равна: (am + bп + со + dp + eq) и т. д./( a + b + c+d + e) и т. д, т. е. сумма жидких масс, по которой при смешивании равномерно распределяется теплота отдельных масс, относится к сумме всех произведений каждой массы на ее теплоту так же, как единица к теплоте смеси». Рихман еще не владел понятием количества теплоты, но написал и логически обосновал совершенно правильную калориметрическую формулу Он без труда обнаружил, что его формула лучше согласуется с опытом, чем формула Крафга. Он правильно установил, что его «теплоты» представляют собой «не действительную теплоту, а избыток теплоты смеси в сравнении с нулем градусов по Фаренгейту». Он совершенно ясно понимал, что: 1. «Теплота смеси распределяется не только по самой ее массе, но и по стенкам сосуда и самому термометру». 2. «Собственная теплота термометра и теплота сосуда распределяются и по смеси, и по стенкам сосуда, в котором находится смесь, и по термометру». 3. «Часть теплоты смеси, в течение того промежутка времени, пока производится опыт, переходит в окружающий воздух...» Рихман точно сформулировал источники ошибок калориметрических опытов, указал причины расхождения формулы Крафта с опытом, т. е. заложил основы калориметрии, хотя сам еще не подошел к понятию количества теплоты. Дело Рихмана продолжили шведский академик Иоганн Вильке (1732— 1796) и шотландский химик Джозеф Блэк (1728—1799). И тот и другой ученый, опираясь на формулу Рихмана, нашли необходимым ввести в науку новые понятия. Вильке, исследуя в 1772 г. теплоту смеси воды и снега, обнаружил, что часть теплоты исчезает Отсюда он пришел к понятию скрытой теплоты таяния снега и к необходимости введения нового понятия, получившего в дальнейшем название «теплоемкость». К этому же выводу пришел и Блэк, не опубликовавший своих результатов. Его исследования были напечатаны только в 1803 г., и тогда стало известно, что Блэк первым четко разграничил понятия количества теплоты и температуры, первым ввел термин «теплоемкость». Еще в 1754—1755 гг Блэк открыл не только постоянство точки плавления льда, но и то, что термометр остается при одной и той же температуре, несмотря на приток тепла, до тех пор, пока весь лед не растает. Отсюда Блэк пришел к понятию скрытой теплоты плавления. Позже он установил понятие скрытой теплоты испарения. Таким образом, к 70-М годам XVIII столетия были установлены основные калориметрические понятия. Лишь спустя почти сто лет (в 1852 г.) была введена и единица-количества теплоты, получившая значительно позже название «калория».( Еще Клаузиус говорит просто о единице теплоты и не пользуется термином «калория». ) В 1777 г. Лавуазье и Лаплас, построив ледяной калориметр, определили удельные теплоемкости различных тел. Аристотелевское первичное качество—тепло стало изучаться методом точного эксперимента. Появились и научные теории теплоты. Одна, наиболее распространенная концепция (ее придерживался и Блэк) — это теория особой тепловой жидкости — теплорода. Другая, ревностным сторонником которой был Ломоносов, рассматривала теплоту как род движения «нечувствительных частиц». Концепция теплорода очень хорошо подходила к описанию калориметрических фактов: формула Рихмана и более поздние формулы, учитывающие скрытые теплоты, прекрасно могли быть объяснены В результате теория теплорода господствовала до середины XIX в., когда открытие закона сохранения энергии заставило физиков вернуться к концепции, успешно разрабатываемой Ломоносовым еще за сто лет до открытия этого закона. Представление о том, что теплота является формой движения, было очень распространенным в XVII в. ф. Бэкон в «Новом органоне», применяя свой метод к исследованию природы теплоты, приходит к выводу, что «тепло есть движение распространения, затрудненное и происходящее в малых частях». Более конкретно и ясно о теплоте как о движении малых частиц высказывается Декарт. Рассматривая природу огня, он приходит к выводу, что «тело пламени... составлено из мельчайших частиц, очень быстро и бурно движущихся отдельно одна от другой». Далее он указывает, что «только это движение в зависимости от различных производимых им действий называется то теплом, то светом». Переходя к остальным телам, он констатирует, «что маленькие частицы, не прекращающие своего движения, имеются не в одном только огне, но также во всех остальных телах, хотя в последних их действие не столько сильно, а вследствие своей малой величины сами они не могут быть замечены ни одним из наших чувств». Атомизм господствовал в физических воззрениях ученых и мыслителей XVII в. Гук, Гюйгенс, Ньютон представляли все тела Вселенной состоящими из мельчайших частичек, «нечувствительных», как их кратко называл позднее Ломоносов. Понятие о теплоте как форме движения этих частиц казалось ученым вполне разумным. Но эти представления о теплоте носили качественный характер и возникли на очень скудной фактической основе. В XVIII в. знания о тепловых явлениях сделались более точными и определенными, большие успехи сделала также химия, в которой теория флогистона до открытия кислорода помогала разобраться в процессах горения и окисления. Все это способствовало усвоению новой точки зрения на теплоту как особую субстанцию, и первые успехи калориметрии укрепили позиции сторонников теплорода. Нужно было большое научное мужество, чтобы разрабатывать в этой обстановке кинетическую теорию теплоты. Кинетическая теория теплоты естественно сочеталась с кинетической теорией материи, и прежде всего воздуха и паров. Газы (слово «газ» было введено Ван Гельмонтом; 1577—1644) по существу еще не были открыты, а пар даже Лавуазье рассматривал как соединение воды и огня. Сам Ломоносов, наблюдая растворение железа в крепкой водке (азотной кислоте), считал выделяющиеся пузырьки азота воздухом. Таким образом, воздух и пар были почти единственными во времена Ломоносова газами — «упругими жидкостями», по тогдашней терминологии. Д. Бернулли в своей «Гидродинамике» представлял воздух состоящим из частиц, движущихся «чрезвычайно быстро в различных направлениях», и считал, что эти частицы образуют «упругую жидкость». Бернулли обосновывал своей моделью «упругой жидкости» закон Бойля — Мариотта. Он установил связь между скоростью движения частиц и нагреванием воздуха и объяснил тем самым увеличение упругости воздуха при нагревании. Это была первая в истории физики попытка истолковать поведение газов движением молекул, попытка несомненно блестящая, и Бернулли вошел в историю физики как один из основателей кинетической теории газов. Спустя шесть лет после выхода «Гидродинамики» Ломоносов представил в Академическое собрание свою работу «Размышления о причине теплоты и холода». Она была опубликована только через шесть лет, в 1750 г., вместе с другой, более поздней работой «Опыт теории упругости воздуха». Таким образом, теория упругости газов Ломоносова неразрывно связана с его теорией теплоты и опирается на последнюю. Д. Бернулли также уделял большое внимание вопросам теплоты, в частности вопросу зависимости плотности воздуха от температуры. Не ограничиваясь ссылкой на опыты Амонтона, он пытался сам экспериментально определить зависимость упругости воздуха от температуры. «Я нашел, — пишет Бернулли, — что упругость воздуха, который здесь в Петербурге был весьма холодным 25 декабря 1731 г. ст. ст., относится к упругости такого же воздуха, обладающего теплотой, общей с кипящей водой, как 523 к 1000». Это значение у Бернулли явно неверное, так как оно предполагает, что температура холодного воздуха соответствует — 78°С. Значительно точнее аналогичные расчеты у Ломоносова, о которых упоминалось выше. Зато весьма замечателен окончательный результат Бернулли, что «упругости находятся в отношении, составленном из квадрата скоростей частиц и первой степени плотностей», всецело соответствующей основному уравнению кинетической теории газов в современном изложении. Бернулли совершенно не касался вопроса о природе теплоты, являющегося центральным в теории Ломоносова. Ломоносов выдвигает гипотезу, что теплота — это форма движения нечувствительных частиц. Он рассматривает возможный характер этих движений: поступательное движение, вращательное и колебательное — и утверждает, что «теплота состоит во внутреннем вращательном движении связанной материи». Приняв в качестве исходной посылки гипотезу о вращательном движении молекул как причине тепла, Ломоносов выводит отсюда ряд следствий: 1) молекулы (корпускулы) имеют шарообразную форму; 2) «...при более быстром вращении частиц связанной материи теплота должна увеличиваться, а при более медленном — уменьшаться; 3) частицы горячих тел вращаются быстрее, более холодных—медленнее; 4) горячие тела должны охлаждаться при соприкосновении с холодным, так как оно замедляет теплотворное движение частиц; наоборот, холодные тела должны нагреваться вследствие ускорения движения при соприкосновении». Таким образом, наблюдающийся в природе переход теплоты от горячего тела к холодному является подтверждением гипотезы Ломоносова. Тот факт, что Ломоносов выделил теплопередачу в число главных следствий, очень существен, и некоторые авторы усматривают в этом основании причислить Ломоносова к открывателям второго закона термодинамики. Вряд ли, однако, приведенное положение может рассматриваться как первичная формулировка второго начала, но вся работа в целом, несомненно, является первым наброском термодинамики. Так, Ломоносов объясняет в ней образование теплоты при трении, послужившее экспериментальной основой первого начала в классических опытах Джоуля. Ломоносов далее, касая сь вопроса о переходе теплоты от горячего тела к холодному, ссылается на следующее положение: «Тело А, действуя на тело В, не может придать последнему большую скорость движения, чем какую имеет само». Это положение является конкретным случаем «всеобщего закона сохранения». Исходя из этого положения, он доказывает, что холодное тело В, погруженное в теплую жидкость А, «очевидно, не может воспринять большую степень теплоты, чем какую имеет Л». Вопрос о тепловом расширении Ломоносов откладывает «до другого раза», до рассмотрения упругости воздуха. Его термодинамическая работа непосредственно примыкает, таким образом, к его более поздней работе об упругости газов. Однако, говоря о намерении отложить рассмотрение теплового расширения «до другого раза», Ломоносов здесь же указывает, что поскольку верхнего предела скорости частиц нет (теория относительности еще не существует!), то нет и верхнего предела температуры. Но «по необходимости должна существовать наибольшая и последняя степень холода, которая должна состоять в полном прекращении вращательного движения частиц». Ломоносов, следовательно, утверждает существование «последней степени холода» — абсолютного нуля. В заключение Ломоносов критикует теорию теплорода, которую считает рецидивом представления древних об элементарном огне. Разбирая различные явления, как физические, так и химические, связанные с выделением и поглощением тепла, Ломоносов заключает, что «нельзя приписывать теплоту тел сгущению какой-то тонкой, специально для того предназначенной материи, но что теплота состоит во внутреннем вращательном движении связанной материи нагретого тела». Под «связанной» материей Ломоносов понимает материю частиц тел, отличая ее от «протекающей» материи, которая может протекать, «подобно реке», через поры тела. Вместе с тем Ломоносов включает в свою термодинамическую систему и мировой эфир, далеко опережая не только свое время, но и XIX век. «Тем самым, — продолжает Ломоносов, — мы не только говорим, что такое движение и теплота свойственны и той тончайшей материи эфира, которой заполнены все пространства, не содержащие чувствительных тел, но и утверждаем, что материя эфира может сообщать полученное от солнца теплотворное движение нашей земле и остальным телам мира и их нагревать, являясь той средой, при помощи которой тела, отдаленные друг от друга, сообщают теплоту без посредничества чего-либо ощутимого». Итак, Ломоносов задолго до Больцмана, Голицына и Вина включил тепловое излучение в термодинамику. Термодинамика Ломоносова—замечательное достижение научной мысли XVIII века, далеко опередившее свое время. Возникает вопрос: почему же Ломоносов отказался рассматривать как тепловое поступательное движение частиц, а остановился на вращательном движении? Это предположение очень ослабило его работу, и теория Д. Бернулли значительно ближе подошла к позднейшим исследованиям Клаузиуса и Максвелла, чем теория Ломоносова. На этот счет у Ломоносова были весьма глубокие соображения. Ему надо было объяснить такие противоречащие друг другу вещи, как сцепление и упругость, связанность частиц тела и способность тел к расширению. Ломоносов был ярым противником дальнодействующих сил и не мог прибегать к ним при рассмотрении молекулярного строения тел. Он не хотел также сводить объяснение упругости газов к упругим ударам частиц, т. е. объяснять упругость упругостью. Он искал механизм, который позволил бы объяснить и упругость и тепловое расширение наиболее естественным образом. В работе «Опыт теории упругости воздуха» он отвергает гипотезу упругости самих частиц, которые, по Ломоносову, «лишены всякого физического сложения и организованного строения...» и являются атомами. Поэтому свойство упругости проявляют не единичные частицы, не имеющие какой-либо физической сложности и организованного строения, но производит совокупность их. Итак, упругость газа (воздуха), по Ломоносову, является «свойством коллектива атомов». Сами атомы, по Ломоносову, «должны быть телесными и иметь протяжение», форму их он считает «весьма близкой» к шарообразной. Явление возникновения теплоты при трении заставляет его принять гипотезу, что «воздушные атомы шероховаты». Тот факт, что упругость воздуха пропорциональна плотности, заставляет Ломоносова заключить, «что она происходит от какого-то непосредственного взаимодействия его атомов». Но атомы, по Ломоносову, не могут действовать на расстоянии, а действуют только при контакте. Сжимаемость воздуха доказывает наличие в нем пустых промежутков, которые делают невозможным взаимодействие атомов. Отсюда Ломоносов приходит к динамической картине, когда взаимодействие атомов сменяется во времени образованием пустого пространства между ними, а пространственное разделение атомов сменяется контактом. «Итак, очевидно, что отдельные атомы воздуха, в беспорядочном чередовании, сталкиваются с ближайшими через нечувствительные промежутки времени, и когда одни находятся в соприкосновении, иные друг от друга отскакивают и наталкиваются на ближайшие к ним, чтобы снова отскочить; таким образом, непрерывно отталкиваемые друг от друга частыми взаимными толчками, они стремятся рассеяться во все стороны». Ломоносов в этом рассеянии во все стороны и видит упругость. «Сила упругости состоит в стремлении воздуха распространиться во все стороны». Надо, однако объяснить, почему атомы при взаимодействии отскакивают друг от друга. Причина этому, согласно Ломоносову, тепловое движение: «Взаимодействие атомов воздуха обусловлено только теплотою». А так как теплота состоит во вращательном движении частиц, то для объя снения их отталкивания достаточно рассмотреть, что произойдет, когда соприкасаются две вращающиеся шарообразные шероховатые частицы. Ломоносов показывает, что они оттолкнутся друг от друга, и иллюстрируют это хорошо известным ему с детских Лет примером отскакивания волчков («кубарей»), которые пускают мальчики на льду. Когда такие вращающиеся волчки соприкасаются, они отскакивают друг от друга на значительные расстояния. Таким образом, упругие столкновения атомов, по Ломоносову, обусловлены взаимодействием их вращательных моментов. Вот для чего ему понадобилась гипотеза теплового вращательного движения частиц! Тем самым Ломоносов полностью обосновал модель упругого газа, состоящего из хаотически движущихся и соударяющихся частиц. Эта модель позволила Ломоносову не только объяснить закон Бойля — Мариотта, но и предсказать отступления от него при больших сжатиях. Объяснение закона и отступлений от него дано Ломоносовым в труде «Прибавление к размышлениям об упругости воздуха», напечатанном в том же томе «Новых Комментариев» Петербургской Академии наук, в котором были напечатаны и две предыдущие работы. В работах Ломоносова встречаются и неверные утверждения, вполне объясняемые уровнем знаний того времени. Но не они определяют значение работ ученого. Нельзя не восхищаться смелостью и глубиной научной мысли Ломоносова, создавшего в младенческую пору науки о теплоте мощную теоретическую концепцию, далеко опередившую эпоху. Современники не пошли по пути Ломоносова, в теории теплоты, как было сказано, воцарился теплород, физическое мышление XVIII столетия требовало различных субстанций: тепловых, световых, электрических, магнитных. Обычно в этом усматривается метафизический характер мышления естествоиспытателей XVIII в., некоторая его реакционность. Но почему же оно стало таким? Думается, что причина этого кроется в прогрессе точного естествознания. В XVIII в. научились измерять теплоту, свет, электричество, магнетизм. Для всех этих агентов были найдены меры, так же как они были найдены давным-давно для обычных масс и объемов. Этот факт сближал невесомые агенты с обычными массами и жидкостями, вынуждал рассматривать их как аналог обычных жидкостей. Концепция «невесомых» была необходимым этапом в развитии физики, она позволила глубже проникнуть в мир тепловых, электрических и магнитных явлений. Она способствовала развитию точного эксперимента, накоплению многочисленных фактов и их первичной интерпретации. Оптика Учение о теплоте развивалось в XVIII в. в тесной связи с химией и оптикой. Огонь, как известно, дает тепло и свет, вызывает химические превращения. Все это заставляло ученых искать взаимосвязи между тепловыми, химическими и световыми явлениями. Ломоносов был решительным противником теплорода, но он не мог отрицать тесной взаимосвязи между светом и химическим строением тела. Его «Слово о происхождении света, новую теорию о цветах представляющее», прочитанное им на академическом собрании 1 июля 1756 г., содержит теорию цветов, непосредственно связанную с тогдашними химическими представлениями. Согласно воззрениям Ломоносова, свет представляет собой волновое движение эфира. Цвета же обусловлены существованием трех сортов частиц эфира, соответствующих трем химическим материям: соляной, серной и ртутной. «Я приметил, — говорит Ломоносов,— и чрез многие годы многими прежде догадками, а после доказательными опытами с довольною вероятностию утвердился, что три рода эфирных частиц имеют совмещение с тремя родами действующих первоначальных частиц, чувствительные тела составляющих, а именно: первой величины эфир с соляною, второй величины со ртутною, третьей величины с серною или горячею первоначальною матернею; а с чистою землею, с водой и воздухом совмещение всех тупо, слабо и несовершенно. Наконец, нахожу, что от первого рода эфира происходит цвет красный, от второго — желтый, от третьего — голубой. Прочие цвета рождаются от смешения первых». Это — одна из попыток связать цвета тел с их химической структурой. Одновременно Ломоносов пытается физически интерпретировать цветность светового луча. Вопрос о физической природе белого цвета и цветов занимал Ньютона и Гука, Ломоносова и Эйлера. Эйлер выдвинул своеобразную резонансную теорию цветов и также примкнул к волновой теории света, игнорируя, однако, принцип Гюйгенса. Принцип Гюйгенса в XVIII в. «не работал», вообще волновая теория света, несмотря на ее поддержку Ломоносовым и Эйлером, была оставлена. Всеобщее увлечение гипотетическими «флюидами», «невесомыми» отразилась и на оптике. Корпускулярная, «вещественная»теория светаза-воевала всеобщее признание. Заметим, что именно в XVII в. проявляется большой интерес к световым измерениям и именно отсюда датируется фотометрия. Причины этого, с одной стороны, лежат в практических потребностях. Вопросы освещения, в частности уличного освещения больших городов, освещения дворцов, устройство маячных фонарей, приобрели большое значение. Лавуазье занимался этими вопросами в Париже, Ломоносов принимал активное участие в устройстве парадных иллюминаций. Кулибин конструировал фонари. Измерение силы света различных источников и освещенности стало интересовать ученых. С другой стороны, методы точного естествознания, распространяясь все шире и шире, не смогли не затронуть область световых явлений, фотометрия была необходима и для науки, и для практики. Основателями фотометрии были француз Пьер Бугер (1698-1758), издавший в 1729 г. «Опыт о градации света» и написавший «Оптический трактат о градации света», изданный посмертно в 1760 г., и эльзасец И. Г. Ламберт (1728—1777), «фотометрия» которого была издана также в 1760 г. Вопрос о распределении света и освещенности издавно интересовал живописцев, и вполне естественно, что такой художник-исследователь, какЛеонардо, был одним из первых экспериментаторов фотометристов. С. И. Вавилов писал о нем: «Его рисунки и пояснения к ним не оставляют никакого сомнения в том, что Леонардо экспериментировал с фотометрической установкой типа Румфорда». В «Оптическомтрактате» Бугера введены такие фотометрические понятия, как «световой поток» (у Бугера — «количество света»), «сила света источника» (у Бугера—«абсолютная сила света»), «освещенность» (у Бугера—«сила света»), «яркость», которую Бугер называет то интенсивностью света, то яркостью света. Основной принцип фотометрических измерений Бугер формулирует следующим образом: «Заставим сначала лучи от этих двух светящих тел (исследуемого источника и свечи— эталона. —П. К.) падать под одинаковым углом на два различных участка поверхности, которую мы будем удалять на большее или меньшее расстояние от светильника или от свечи до тех пор, пока эти два участка поверхности не станут казаться нам совершенно одинаково освещенными. Тогда остается лишь измерить оба расстояния, и их квадраты будут выражать отношение абсолютных сил света двух светящих тел». Бугер сконструировал простой фотометр, разработал методы уравнивания создаваемых различными источниками освещенностей, выполнил обширную программу фотометрических измерений. В частности, он установил весьма важный закон поглощения света, согласно которому интенсивность светового потока убывает с толщиной поглощающего слоя по экспоненциальному закону. С.И.Вавилов и В.Л.Левшин тщательно исследовали справедливость закона Бугера при разных интенсивностях и нашли, что он остается справедливым при изменении интенсивности в 1020 раз. В книге «Микроструктура света» С.И.Вавилов вскрыл сложные и тонкие физические причины нарушения закона, о которых, понятно, классическая оптика не имела никакого представления. Заметим, что закон Бугера и закон зависимости освещенности от расстояния источника света до освещаемой поверхности неправильно назывались в учебниках законами Ламберта. С.И.Вавилов много сделал для восстановления исторической справедливости по отношению к Бугеру. Ламберт уточнил основные фотометрические понятия и соотношения, к закону зависимости освещенности от расстояния он добавил закон зависимости освещенности от угла наклона падающих лучей, сформулировал закон зависимости яркости источника от «угла истечения» света из источника. Этот закон Ламберта справедлив для абсолютно черного тела (яркость пропорциональна синусу угла, образованного выходящими лучами с поверхностью излучающегося тела). Ламберт, однако, полагал его справедливым вообще и в частности, полагал, что вследствие этого закона Солнце должно казаться равномерно освещенным диском в противоположность утверждению Бугера, что яркость Солнца убывает от центра к периферии. Фотометрия была важнейшим достижением оптики XVIII в. Из других результатов следует отметить построение, вопреки мнению Ньютона, ахроматических объективов телескопов и труб и открытие аберрации света (Джемс Брадлей, 1728). Это последнее открытие дало новый метод определения скорости света и позже сыграло важную роль в развитии оптики движущихся сред. Электричество и магнетизм Как уже говорилось, научное исследование электрических и магнитных явлений началось с книги Гильберта, которому принадлежит и термин «электричество», произведенный от греческого названия янтаря. Гильберт кропотливо исследовал множество самых различных тел и построил для этой цели специальный электрический указатель, который он описывает таким образом: «Сделай себе из любого металла стрелку длиной в три или четыре дюйма, достаточно подвижную на своей игле, наподобие магнитного указателя». С помощью этого указателя, прототипа современных электроскопов, Гильберт установил, что способностью притягивать обладают многие тела, «не только созданные природой, но и искусственно приготовленные». Однако он нашел также, что многие тела «не притягивают и не возбуждаются никакими натираниями». К числу их относится ряд, драгоценных камней и металлы: «серебро, золото, медь, железо, также любой магнит». Тела, обнаруживающие способность притяжения, Гильберт назвал электрическими, тела, не обладающие такой способностью, — неэлектрическими. Электрические явления, по Гильберту, коренным образом отличаются от магнитных. Гильберт указывает, как производится электризация тел трением: «Их натирают телами, которые не портят их поверхности и наводят блеск, например жестким шелком, грубым немарким сукном и сухой ладонью. Трут также янтарь о янтарь, об алмаз, о стекло и многое другое. Так обрабатываются электрические тела». В сочинении Гильберта много интересных наблюдений и догадок, смешанных с фантастическими объяснениями в духе средневековых алхимиков. Но главное значение его труда в том, что он положил твердое основание изучению электрических и магнитных явлений и на этом основании началось интенсивное развитие этого важного раздела науки и техники. Электрическими опытами занимался и Ньютон, который наблюдал электрическую пляску кусочков бумаги, помещенных под стеклом, положенным на металлическое кольцо. При натирании стекла бумажки притягивались к нему, затем отскакивали, вновь притягивались, и т. д. Эти опыты Ньютон производил еще в 1675 г. Эксперименты по электричеству проводили и другие члены Лондонского Королевского общества. Бойль, повторив опыты Герике с шаром, установил, что наэлектризованное тело не только притягивает ненаэлектризованное, но и, в свою очередь, притягивается последним. Он показал, что электрические взаимодействия наблюдаются и в вакууме. В 1700 г. доктор Уолл извлек из натертого большого куска янтаря электрическую искру, проскочившую с треском в палец руки экспериментатора. Электрическую искру получил в 1705 г Хауксби, заменивший серный шар Герике стеклянным. Ньютон в 1716 г. наблюдал искровой разряд между острием иголки и наэлектризованным телом. «Искра напомнила мне о молнии в малых, очень малых размерах», — писал Ньютон. Наконец, Стефэн Грей (1670-1736), также член Лондонского Королевского общества, в 1729 г. открыл явление электропроводимости тел и показал, что для сохранения электричества тело должно быть изолировано. Он наэлектризовал ребенка, сначала по две сив его на шнурах, сплетенных из волос, а затем поставив его на смоляной диск. Опыты Грея, опубликованные в 1731 и 1732 гг., обратили на себя внимание французского естествоиспытателя Шарля Дюфэ (1698—1739), создавшего первую теорию электрических явлений. Повторяя опыты Грея по электризации изолированного человеческого тела, он сам ложился на шелковые шнурки, и его электризовали настолько сильно, что из тела при приближении руки Другого человека выскакивали искры. Дюфэ установил два рода электрических взаимодействий: притяжение и отталкивание. Сначала он установил, что «наэлектризованные тела притягивают ненаэлектризованные и сейчас же их отталкивают, как только они наэлектризуются вследствие соседства или соприкосновения с наэлектризованными телами». В дальнейшем он открыл «другой принцип, более общий и более замечательный, чем предыдущие». «Этот принцип, — продолжает Дюфэ, — со стоит в том, что существует электричество двух родов, в высокой степени отличных один от другого: один род я называю «стеклянным» электричеством, другой— «смоляным»... Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное. Так, например, тело, наэлектризованное стеклянным электричеством, отталкивает все тела со стеклянным электричеством, и, обратно, оно притягивает тела со смоляным электричеством. Точно так же смоляное отталкивает смоляное и притягивает стеклянное». Рис. 24. Первый опыт с лейденской банкой Этот закон был опубликован Дюфэ в Мемуарах Парижской Академии наук за 1733 г. Новые открытия в области электричества и усовершенствование электрических машин, получивших кондуктор, подушки для натирания и, наконец, сенсационное изобретение лейденской банки в 1745—1746 гг., возбудили в обществе большой интерес к электричеству. Электрические опыты проводились в светских салонах и королевских дворцах, на заседаниях ученых обществ и в частных домах. За Европой последовали Америка и Россия. Франклин, Рихман, Ломоносов, Эпинус внесли существенный вклад в эту науку. Георг Вильгельм Рихман родился 11 июля 1711 г. в г. Пярну (тогда Пернове) в Эстонии. Рихман учился в германских университетах в Галле и Иене, а с 1735 г. в университете Петербургской Академии наук. В 1740 г. он становится адъюнктом, а в следующем, 1741 г. — профессором академии. В январе 1745 г. Рихман начал собственные опыты по электричеству. В процессе этой работы, как пишет он сам, «я встретился со многими новыми явлениями...», далее «...открыл новый удобный способ исследовать тела, обладающие первичным, и тела, обладающие производным электричеством». Здесь под первичным электричеством Рихман понимает электричество, возбуждаемое в изоляторах трением, под производным — электричество в проводниках, получаемое от контакта с заряженными телами. Существенно новым моментом в исследованиях Рихмана было то, что он «пытался подвергнуть измерению порождаемое электричество». Вот как он описывает первую свою попытку «измерить электричество»: «Маленькие весы я подвесил на железной подставке так, что одна чашка их нависла над этой подставкой, а другая висела около нее на расстоянии 3 дюймов. На эту чашку я положил 30 гранов; поскольку равновесие было нарушено, коромысло с указанной стороны наклонилось и дно другой чашки весов удалилось на 1 дюйм от железной подставки. Когда проволока СDВ и весь аппарат были наэлектризованы, железная чашка тянула книзу и ударялась о подставку, слышался треск и одновременно был виден свет между подставкой В и чашкой весов. Итак, на указанном расстоянии сила был а такая, что 30 гранов могли быть подняты на высоту 1 лондонского дюйма. Тем же способом я надеялся измерить и электрическую силу». Итак, Рихман попытался «взвесить» электрическую силу. Это была правильная идея, которая в своем развитии привела к изобретению абсолютного электрометра. Рихман описывал ряд опытов с различными весами и массами. Но потом он переходит к другому методу — методу электрического указателя — родоначальнику, современных электрометров. «Я придумал и другой способ сравнивать электрические силы. К железной проволоке СВ, отводящей электричество, я подвесил льняную нитку DE, затем на расстоянии 492 лондонских линий я укрепил шелковую голубую нитку, параллельную горизонту, а в g поместил тяжелое тело. Шелковую нитку Eg я разделил на десятые доли лондонского фута, обозначив точки деления льняными нитками. Когда проволоке сообщалось электричество, нитка DE приближалась к тяжелому телу g и принимала наклонное положение, например D4, D5, D6 и т. д. Когда электричество прекращалось, нитка вновь принимала вертикальное положение DB. Да позволено будет назвать указателем электричества нить DE, свисающую с наделенной электричеством проволоки и приближающуюся к тяжел ому телу». Описание экспериментов Рихмана было опубликовано в «Новых Комментариях» Петербургской Академии наук за 1751 г. спустя шесть лет после начала опытов. Это была первая публикация по электричеству в России. Статья Рихмана «Новые опыты с электричеством, порождаемым в телах» содержит описание его экспериментальной установки и опытов, произведенных на этой установке. Установка состояла из электрической машины Гравезанда. От электризуемого шара машины электричество отводилось железной проволокой к железной подставке, помещенной на смоле, заполнявшей конический сосуд. Подставка сообщалась с электрическим указателем, состоящим из вертикальной железной линейки, к верхнему концу которой прикреплялась льняная нить определенной длины и веса. К столу, на котором находился сосуд со смолой, прикреплялся деревянный квадрант с делениями, образующий шкалу указателя. Нить немного не доходила до шкалы. К другому концу железной подставки присоединялась также железная линейка, от которой электричество могло передаваться различным телам. Электрический указатель занимал мысли Рихмана до самой смерти. Он хорошо понимал, что «совершенный электрометр должен оказать большую пользу в деле открытия и определения законов электричества», и, как он писал в неопубликованной рукописи «Об усовершенствовании электрического указателя», «делал много тщетных попыток в этой области». Описанный в «Комментариях» указатель был жестко связан с экспериментальным столом, и в этом заключалось большое неудобство. Рихман сделал переносной прибор, который представлял собой лейденскую банку (стеклянную бутылку, заполненную наполовину металлическими опилками, вставленную в металлический цилиндрический сосуд), в которую была помещена железная линейка, выступающая наружу. К наружному концу линейки прикреплялась льняная нить. В работе «Рассуждения об указателе электричества и о пользовании им при исследовании явлений искусственного и естественного электричества» Рихман подводит итог многолетней экспериментальной работы по исследованию электрических явлений, кончая исследованиями электрической природы молнии. «...Восемь лет назад, — пишет Рихман в 1753 г.,— я приступил... к исследованию электрических явлений. Совершенный электрометр, т. е. инструмент для определения электрической силы, вне всякого сомнения, может сильно способствовать развитию электрической теории. Вот почему с самого начала я сразу же стал размышлять об удобном способе определять интенсивность электрической силы. Впрочем, мне до сих пор не посчастливилось сделать совершенный электрометр, — не знаю как другим». Так самокритично и честно оценивает Рихман свои поиски надежной конструкции электрометра. Для создания такого инструмента потребовалось более ста лет. Электрометры были созданы во второй половине XIX столетия. В этой же работе Рихман описывает оба типа своих приборов и основные опыты, произведенные с ними, в том числе и опыты с электричеством грозы, приведшие к трагической гибели ученого 26 июля 1753 г. Его классическая работа, о которой мы здесь говорили, была опубликована в 1758 г., спустя пять лет после смерти ученого. Несмотря на несовершенство указателя своего прибора, Рихман с полным правом утверждал, что он «является надежным инструментом для распознавания больше или меньше градус электричества в той или иной наэлектризованной массе». Он нашел, что «электрическая материя, не-киим движением возбуждаемая вокруг тела, по необходимости должна опоясывать его на некотором расстоянии; на меньшем расстоянии от поверхности тела действие ее бывает сильнее; следовательно, при увеличении расстояния сила ее убывает по некоторому, пока еще неизвестному закону». Другими словами, с помощью своего указателя Рихман открыл существование электрического поля вокруг заряженного тела, напряженность которого убывает с увеличением расстояния от тела «по некоторому, пока еще неизвестному закону». Таким образом, русскому ученому принадлежит честь открытия электрического поля и вполне определенное утверждение о зависимости действия этого поля от расстояния до источника поля. Этот «неизвестный пока закон» был найден спустя сорок лет Кулоном. В своей работе Рихман упоминает Франклина и его теорию положительного и отрицательного электричества. Обратимся к исследованиям этого ученого. Рис. 50. Первый проект электрического указателя. Рисунки Рихмана Основоположник американской науки Вениамин (Бенджамин) Франклин родился в семье бостонского мыловара 17 января 1706 г. Отец его, бедный ремесленник, обремененный большой семьей (Вениамин был пятнадцатым ребенком), выехал в Америку из Англии в поисках лучшей жизни. Вениамину рано пришлось начать трудовую жизнь, сначала помогая отцу, а затем брату, владевшему небольшой типографией. Работая в типографии, Франклин много читал и занимался самообразованием. Когда его брат начал издавать газету, Франклин стал пробовать свои силы в журналистике, тайно подбросив написанную им статью. Статья была опубликована, за нею появились другие, привлекшие внимание общественности. Раскрытие авторства Франклина привело к ухудшению его отношений с братом. Вениамин расторг контракт с ним и уехал в поисках работы в Нью-Йорк, а оттуда в Филадельфию. Трудолюбие и терпение привели Франклина после долгих лет лишений к успеху. Он достиг независимого и обеспеченного положения в Филадельфии, стал одним из уважаемых сограждан, крупным общественным деятелем. Его избрали секретарем Собрания провинции Пенсильвания, он становится директором почт и в дальнейшем генерал-почтмейстером американских колоний. Наряду с этим он развернул широкую просветительскую деятельность, организовал в филадельфии библиотеку, основал Пенсильванский университет, филадельфийское философское общество. Большую роль сыграл Франклин в борьбе за независимость американских колоний (1775—1783). Он принимал участие в работе континентального конгресса и созданного им комитета по выработке декларации независимости. Посланный новым государством во францию в качестве посла, он сумел добиться поддержки франции в борьбе с Англией. Это существенно повлияло на исход борьбы. В 1783 г. Франклин вместе с двумя другими уполномоченными конгресса Соединенных Штатов Северной Америки (так было названо новое государство) подписал мирный договор с Англией. Франклин принимал активное участие в выработке конституции Соединенных Штатов, горячо боролся против порабощения негров, за демократические принципы управления государством. Умер Франклин 17 апреля 1790 г. Таким образом, Франклин был одним из основателей Соединенных Штатов Америки, одним из создателей нового государства. Он был та^же основателем науки этого государства, учредителем одного из первых университетов, первого научного общества — филадельфийского философского общества. Он внес своими трудами большой вклад в американскую и мировую науку. Среди этих трудов первое место занимают его исследования по электричеству. Эти исследования составили содержание труда Франклина «Опыты и наблюдения над электричеством», состоящего из писем к члену Лондонского Королевского общества Питеру Коллинсо-ну. Коллинсон прислал в филадельфийскую библиотеку стеклянную трубку с указанием, как пользоваться ею для производства электрических опытов. В письме к Коллинсону от 28 марта 1747 г. Франклин писал, что этот подарок побудил его и других членов библиотеки «заняться электрическими опытами, при проведении которых нами наблюдались некоторые новые, по нашему мнению, явления». Франклин занимался электричеством с большим увлечением. «...Мне до этого никогда не приходилось проводить исследование, которое столь полно завладело бы моим вниманием и временем...» — признавался он в том же письме. Результатом этого увлечения было создание унитарной теории электрических явлений, доказательство электрической природы молнии и другие важные открытия. Рис. 26. Расположение приборов в электрических опытах Рихмана Один из первых опытов Франклина заключался в электризации чугунного шара, помещенного на горлышке «чистой сухой стеклянной бутылки». Электризация исследовалась с помощью легкого пробкового шарика, подвешенного на шелковой нити, прикрепленной к потолку. Франклин установил в этом опыте действие проводящего острия, разряжающего шар, и светя щегося в темноте при разряде. Франклин уже в письме от 11 июля описал свои опыты с наэлектризованным шаром, острием, заряженной вертушкой. Здесь он ввел представление о положительном и отрицательном электричестве. «Чтобы электризовать плюс или минус, требуется знать лишь только то, что части трубки или шара, которые натираются, притягивают в момент трения электрический огонь и, значит, забирают его из предмета, которым производится натирание; эти же самые части, как только прекратится их натирание, стремятся отдать полученный ими огонь любому предмету с меньшим его количеством». Рис. 27. Элетрические указатель, применявшийся при исследовании грозы. Рисунок Рихмана Таким образом, Франклин пользуется представлением об особой электрической субстанции, которую он называет «электрическим огнем». Он предполагает, что электрический огонь «является распространенным элементом» и тела до процесса электризации имеют равные количества этого элемента. В письме от 1 сентября 1747 г. Франклин описывает действие лейденской банки. «Удивительно, как эти два состояния электричества— плюсовое и минусовое — сочетаются и уравновешиваются в этой чудодейственной банке!» — восклицает он. Франклин тщательно исследовал эту взаимосвязь. Опытом с разборной банкой он установил, что вся сила банки и способность к удару заключается в самом стекле, а не в обкладках. Этот опыт им описан в письме IV от 1748 г. Здесь же он излагает результаты* своих опытов и сконструированное им «колесо Франклина» — модель электростатического двигателя, распространенную принадлежность школьных физических кабинетов. К 1749 г. теория электричества Франклина была завершена. В письме Коллинсону от 29 июля 1750 г. он так формулирует ее основные положения. «1. Электрическая субстанция состоит из чрезвычайно малых частиц, так как она способна проникать в обыкновенную материю, даже в самые плотные металлы, с большой легкостью и свободой, как бы не встречая при этом сколь-либо заметного сопротивления. 3. Электрическая субстанция отличается от обыкновенной материи в том отношении, что частицы последней взаимно притягиваются, а частицы первой отталкиваются друг от друга... 4. И хотя частицы электрической субстанции взаимно отталкивают друг друга, они сильно притягиваются всей прочей материей. 6. Таким образом, обыкновенная материя по отношению к электрической жидкости является как бы своеобразной губкой... 7. Но в обыкновенной материи содержится (как правило) столько электрической субстанции, сколько она может заключать в себе. Если прибавить ей этой субстанции еще, то она разместится снаружи, на поверхности, и образует то, что мы называем электрической атмосферой; в этом случае говорят, что предмет наэлектризован. 15. Электрическая атмосфера принимает форму того предмета, который она обволакивает...» Франклин показывает, что электрическая атмосфера обволакивает шар равномерно, с остриев ее легче отобрать, чем с граней. Он демонстрирует стека-ние электричества с острия на различных опытах. Заметим, что это свойство острия и углов было еще раньше открыто и исследовано Рихманом. Существенно, что в теории Франклина электричество является субстанцией, которую нельзя создать или уничтожить, а можно только перераспределить. Закон сохранения электрического заряда—основное положение теории Франклина, предшественницы электронной теории. Франклин высказал также гипотезу, что молния представляет собой разряд наэлектризованных туч. Он произвел знаменитый опыт с воздушным змеем, запуская его при приближении грозовых туч. К верхнему концу вертикальной планки крестовины змея он прикреплял заостренную проволоку. К концу бечевки привязывал ключ и шелковую ленту, которую держал рукой. «Как только грозовая туча окажется над змеем, заостренная проволока станет извлекать из нее электрический огонь, и змей вместе с бечевой наэлектризуется... А когда дождь смочит змей вместе с бечевой, сделав их тем самым способными свободно проводить электрический огонь, Вы увидите, как он обильно стекает с ключа при приближении Вашего пальца». (Письмо Коллинсону от 19 октября 1752 г.). Опыты Франклина и его идея громоотвода вызвали широкий резонанс. Их повторяли в Европе.Жан Далибар (1703— 1799) во франции, установив на подставке из электрика (т. е. изолятора) в саду железный заостренный шест высотой 40 футов, извлекал из него искры во время грозы. Аналогичные наблюдения проводили Ломоносов и Рихман в Петербурге. Как мы уже знаем, во время наблюдений грозы 26 июля 1753 г. Рихман был убит молнией. Отметим, что Франклин, употребляя термины «электрик» и «неэлектрик», критиковал их как неверные. По его теории электричество содержится во всех телах; электрическая субстанция «довольно равномерно рассредоточена по всей массе нашего шара, состоящего из суши и воды». Поэтому термины «электрик» и «неэлектрик» должны быть отброшены как неверные и заменены понятиями «проводник» и «непроводник» (единственное отличие одних тел от других состоит только в том, что некоторые проводят электрическую субстанцию, другие нет)». Как мы видим, Рихман начал свои электрические исследования за два года до Франклина. Совершенно независимо от Франклина начал «электрические воздушные наблюдения» и Ломоносов. Ему удалось с помощью электрического указателя установить электрическое состояние атмосферы в отсутствие грома и молнии. Об этом он сообщал в своей посмертно опубликованной статье. Рихман и Ломоносов не приняли теории Франклина. Ломоносов разрабатывал свою теорию электрических явлений, в которой сделал попытку объяснить электричество движением частиц эфира. Сопоставляя это с идеей Рихмана об электрическом поле, можно констатировать, что если Франклин предвосхитил будущую электронную теорию, то петербургские академики предвосхитили будущую теорию поля фарадея — Максвелла. В 1759 г. в Петербурге вышла на латинском языке книга «Опыт теории электричества и магнетизма» академика Франца Ульриха Теодора Эпинуса (1724—1802). За два года до выхода этой книги член Берлинской Академии наук Эпинус принял приглашение Петербургской Академии наук и заключил контракт на пять лет. Однако в России он нашел вторую родину, принял русское подданство и проработал в новом отечестве 45 лет до самой смерти. «Опыт теории электричества и магнетизма» Эпинуса, в отличие от книги Франклина и работ Рихмана, рассматривал не только электрические явления, но и магнетизм. При этом, в отличие от Гильберта, Эпинус ищет не отличия, а сходства между электричеством и магнетизмом. Открытие им полярной электризации турмалина при нагревании (пироэлектричество), опубликованное им в 1756 г., поразило его в особенности тем, что он обнаружил «чрезвычайное сходство между этим камнем (турмалином) и магнитом». Под впечатлением этого открытия Эпинус «начал снова исследовать сходство между магнитом и электрической силой». В результате этих исследований он стал считать «причины магнитных и электрических явлений совершенно сходными, а действия магнита аналогичными действиям лейденской банки». В основу своей теории Эпинус кладет представление об электрической и магнитной жидкостях, частицы которых взаимодействуют с материей и между собой притягательными и отталкива-тельными силами. Следуя примеру Ньютона, Эпинус не рассматривает природу этих сил, а описывает с помощью их экспериментальные факты. Вместе с тем Эпинус замечает, что хотя он «вполне убежден в существовании сил притяжения и отталкивания », однако не считает их, «как поступают некоторые неосторожные последователи великого Ньютона, силами, внутренне присущими телам», и не одобряет учения, «которое постулирует действие на расстояние». «...Мой взгляд, — пишет Эпинус, — сводится к тому, что притяжения и отталкивания... я считаю явлениями, причины которых еще скрыты, однако от них зависят и от них берут начало другие явления». Такова позиция Эпинуса в споре картезианцев и ньютониан-цев. Эпинус принимает франклиновс-кую гипотезу единой электрической жидкости: «Существует некая жидкость, производящая все электрические явления и вследствие этого названная электрическою, тончайшая, весьма эластичная, части которой, даже на значительных расстояниях, заметно отталкивают друг друга». «Частицы этой жидкости притягиваются материей, из которой состоят все известные до сих пор тела». По отношению к электрической жидкости материальные тела разделяются на два класса: одни легко проводят электрическую материю, другие «препятствуют ее свободному перемещению». Первую группу тел Эпинус называет «не электрическими по своей природе», другую — «электрическими по своей природе». Выше мы видели, что Франклин считал эти термины неправильными и предпочитал говорить о проводниках и непроводниках. Однако термины «неэлектрик», «электрик» держались долго и лишь в первой половине XIX в. были заменены привычными для нас терминами «проводники» и «изоляторы». По аналогии с электрическими явлениями Эпинус вводит для описания магнитных явлений магнитную жидкость. «...Ее частицы, как и частицы электрической жидкости, взаимно отталкивают друг друга». Однако большинство тел в природе не реагирует с магнитной жидкостью, лишь некоторые тела, и прежде всего железо, притягиваются магнитной материей. «Существует величайшее сходство между железом и железными телами, с одной стороны, и телами, электрическими по своей природе, с другой...» «До сих пор неизвестно ни одного тела, которое действовало бы на магнитную материю и соответствовало бы телам, не электрическим по природе». Таким образом, Эпинус констатирует сходство магнетиков (ферромагнетиков) и «электриков» (диэлектриков), а также отсутствие для магнетизма проводимости, аналогичной электрической проводимости. Но в остальном электрическая и магнитная жидкости, по Эпинусу, действуют по сходным законам. Так, тела не взаимодействуют, если содержат «естественное» количество электрической или магнитной жидкости. Электричество и магнетизм возникает «..либо увеличением количества электрической или магнитной жидкости так, чтобы оно стало выше естественного, либо уменьшением так, чтобы оно стало ниже его». «Франклин назвал, — говорит Эпинус, — электричество, которое получается путем увеличения количества электрической материи, положительным, а то, которое получается путем ее уменьшения, отрицательным. В том же смысле я сохраняю эти термины, перенося их на магнетизм». Заметим, что в том же, 1759 г., в котором вышло сочинение Эпинуса, англичанин Саймер выдвинул дуалистическую теорию электричества, предположив существование двух противоположных родов электричества: одного — аналогичного электричеству, получающемуся на стекле при его натирании, другого — аналогичного электричеству, получающемуся при электризации янтаря («смоляное» электричество). По унитарной теории Франклина — Эпинуса «любое тело, предоставленное самому себе, самопроизвольно всегда возвращается в такое состояние, когда оно содержит точно такое количество электрической жидкости, какое достаточно для достижения равновесия между силой притяжения или силой отталкивания». Эпинус разбирает возможные случаи взаимодействия тел. При этом он высказывает предположение, что силы отталкивания электрических или магнитных масс уменьшаются с увеличением расстояния между ними.Хотя вид этой функциональной зависимости ему неизвестен, однако он признает, что «охотно утверждал бы, что эти величины изменяются обратно пропорционально квадратам расстояний». Эту зависимость ему подсказывает аналогия . с законом тяготения. Эпинус указывает, что наблюдающиеся на опыте притяжения ненаэлектризованных тел к наэлектризованным объясняются тем, что «это тело благодаря одному лишь приближению к другому наэлектризованному телу само может стать наэлектризованным». Это явление электрической индукции было известно уже Рихману, его описали в 1754 г. англичанин Джон Кантон (1718—1772) и в 1757 г. немец Иоганн Карл Вильке (1732-1796). Эпинус исследовал экспериментально электрическую индукцию в проводниках и изоляторах, при этом он установил, что в изоляторах она выражена слабее, чем в проводниках. Таким образом, Эпинус по сути дела открыл поляризацию диэлектриков. Крутильные весы Кулона В своем трактате Эпинус выдвинул положение об электростатическом равновесии тела, утверждая, что тело стремится самопроизвольно перейти в такое состояние, в котором количество электричества в нем будет «естественным». Как уже было сказано, он подробно анализирует силы, действующие на тело, постулируя, что равновесие электричества в нем достигается, когда сумма притягательных и отталкивательных сил равна нулю. Но он не сумел понять закона распределения электричества в проводниках и наблюдения Франклина, что «пробковые шарики не подвергали сь BOB се дей стви ю электриче ства металлического сосуда, внутри которого они находились». Естествоиспытатель и философ Пристли, разделяющий со шведом Шееле славу открытия кислорода, правильно оценил важность эксперимента Франклина. Этот эксперимент получает объяснение, если предположить, что силы взаимодействия электрических частиц обратно пропорциональны квадрату расстояния. Пристли высказал это предположение в своей «Истории электричества» в 1767 г., а в 1771 г английский лорд Кавендиш впервые экспериментально показал, что силы взаимодействия электрических зарядов подчиняются закону где n=2±1/50 Опыт Кавендиша заключался в следующем. Шар диаметром 12, 1 дюйма, покрытый оловянной бумагой (станиолем), помещался внутри другого шара 13,3 дюйма в диаметре так, чтобы он был изолирован от наружного шара. Наружный шар состоял из двух полушарий, также покрытых станиолем, которые можно было раздвигать. Через небольшое отверстие в наружном шаре можно было устанавливать проводящий контакт между ним и внутренним шаром с помощью проволочки, привязанной к шелковине. В начале опыта, когда полушария сближены и установлен проводящий контакт, наружную сферу заряжают от лейденской банки Затем с помощью шелковинки контактную проволоку удаляют, раздвигают наружные полушария и исследуют электризацию внутреннего шара. Электроскоп не обнаружил заряда этого шара. Кавендиш исследовал чувствительность электроскопа и показал, что он мог бы обнаружить заряд внутреннего шара, равный 1/60 заряда внешней сферы. Отсюда Кавендиш вывел, что сила взаимодействия электрических частиц убывает с расстоянием по закону , где n отличается от двух не более чем на1/50. Генри Кавендиш (1731-1810) был богатым английским лордом, занимавшимся физикой и химией в качестве «хобби», как сказали бы теперь. В 1766 г он открыл водород и получил углекислый газ, он показал, что вода получается при горении водорода. Кавендиш с помощью крутильных весов определил постоянную закона тяготения и тем самым «взвесил» Землю. Одинокий, чудаковатый джентльмен, он неохотно публиковал свои работы, и в частности свои электрические исследования. Они оставались неизвестными до 1879 г., когда их опубликовал Максвелл, первый профессор лаборатории Кавендиша, открытой на средства потомка Генри Кавендиша в Кембридже в 1874 г. Максвелл повторил опыты Кавендиша с электрометром Томсона и показал, что п может отличаться от 2 не более чем на 1/21600 «Что касается скрытности Кавендиша, — писал в 1891 г. известный электрофизик Хевисайд, — то она совершенно непростительна; это грех» Этот «грех» стоил Кавендишу славы открывателя точного закона электрических взаимодействий, который навсегда вошел в науку под названием закона Кулона. Французский военный инженер, а с 1781 г. член Парижской Академии наук Шарль Огюстен Кулон (1736-1806) в 1777 г. исследовал кручение волос, шелковых и металлических нитей. Результатом этих исследований явилось открытие закона кручения : где ? —угол кручения, Р — закручивающая сила, l - длина нити, r - ее радиус. В 1784 г. Кулон сконструировал чувствительный прибор — крутильные весы. С помощью этих весовой открыл законы электрических и магнитных взаимодействий. Его опыты и выводы из них опубликованы им в 1782—1785 гг. в семи мемуарах. Аппарат Кулона представлял собой стеклянный цилиндр с измерительной шкалой по окружности, в крышке цилиндра имелись центральное и боковое отверстия. В центральное отверстие пропускалась серебряная нить, закрепленная на измерительной головке и проходящая по оси высокого стеклянного цилиндра, заканчивающегося упомянутой головкой. Нить несла легкое стеклянное коромысло, на котором находились шарик и противовес. В боковое отверстие пропускался стерженек, несущий наэлектризованный шарик. В первом мемуаре 1785 г. Кулон исследовал отталкивающую силу и нашел, что при угловых расстояниях между шариками (которые первоначально при контакте получают одинаковые заряды) 36°, 18°, 9° нить закручивалась соответственно на 36°, 144°, 576°, т. е. силы росли обратно пропорционально квадратам расстояний. Во втором мемуаре Кулон нашел закон взаимодействия магнитных полюсов. Существенным моментом в работе Кулона было установление метода измерения количества электричества и количества магнетизма (магнитных масс). В научной системе единиц законы Кулона дают основную базу системы электрических и магнитных единиц. После Кулона стало возможным построение математической теории электрических и магнитных явлений. Глава вторая. Развитие основных направлений физики в XIX в. Развитие механики в первой половине XIX столетия Прежде чем перейти к описанию событий в истории физики началаХ1Х столетия, расмотрим коротко развитие механики в первой половине XIX в. Трудами Эйлера, Лагранжа и других математиков и механиков XVIII в. сформировалась та отрасль математического естествознания, которая получила название теоретической механики. В качестве таковой она выделилась из физики, и ее развитие было более тесно связано с развитием математики, чем физики. В историю механики существенный вклад внесли и русские ученые: математик и механик М. В. Остроградский (1801-1862), имя которого встречается в физике в связи с теоремой Остроградского—Гаусса, П.Л.Чебышев (1821— 1894), А.М.Ляпунов (1857-1918) и многие другие. Деятельность европейских и русских механиков XIX в. рассматривается в истории механики, и мы на ней останавливаться не будем. Мы упомянем здесь коротко о некоторых механиках, работавших после Лагранжа, продолживших его дело и внесших в механику новые понятия, важные для физики. В 1803 г. вышел груд Луи Пуансо (1777—1859) «Элементы статики «Пуансо ввел новое динамическое понятие пары сил, изучил свойства пар, сформулировал общий закон сложения сил, действующих на тело, и общие условия равновесия. В1811 г. вышел «Трактат о механике» Симеона Пуассона (1781—1840). В этом трактате Пуассон развивает и популяризирует традиции Лагранжа, иллюстрируя общие предположения многочисленными примерами. «Трактат» Пуассона долгие годы служил учебным пособием по механике. Математик Жан Виктор Понселе (1788—1867), бывший солдат наполеоновской армии и русский военнопленный, ввел в механику важное понятие работы. Это понятие фигурирует и в «Трактате о механике твердых тел и о расчете действия машин» (1829.) Гас-пара Гюстава Кориолиса (1792—1843). Кориолис открыл также ускорение, испытываемое движущимися телами во вращающейся системе, и соответствующую силу инерции. Это ускорение ныне известно под названием «кориолисово ускорение», а сила — под названием «сила Кориодиса» (1835). В 1829 г. вышла работа знаменитого немецкого математика К. ф. Гаусса (1777—1855) «Об одном новом общем принципе динамики». В этом сочинении Гаусс предлагал положить в основу механики вместо принципа наименьшего действия другой, который он формулировал следующими словами: «Движение системы материальных точек, связанных между собою произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, т. е. оно происходит с наименьшим возможным принуждением, если в качестве меры принуждения, примененного в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины ее отклонения от того положения, которое она заняла бы, если бы была свободной». Следует отметить, что этой работе предшествовали многолетние геодезические и астрономические исследования Гаусса, в результате которых им был найден метод наименьших квадратов, играющий важную роль в теории ошибок и обработке экспериментальных данных. Сформулированный выше принцип наименьшего принуждения Гаусса близко подходит к методу наименьших квадратов: природа действует таким образом, что сумма квадратов отклонений движения точки от движения, невозмущенного действием сил, является минимальной. Особенно важную роль вариационный принцип наименьшего действия сыграл в работах У.Р.Гамильтона (1805-1865). УильЯм Роуан Гамильтон ирландский математик и физик. С 1827 г. он был профессором астрономии в Дублинском университете и директором астрономической обсерватории университета. В 1834 г. Гамильтон выступил с программной статьей «Об общем методе в динамике, посредством которого изучение движений всех свободных систем притягивающихся или отталкивающихся точек сводится к отысканию и дифференцированию одного центрального соотношения или характеристической функции». Характеризуя развитие механики со времен Ньютона, Гамильтон выделяет учение славянского ученого Руджера Иосипа Бошковича, современника и ровесника Ломоносова, пережившего его более чем на двадцать лет (Бошкович родился 18 мая 1711 г. в Дубровнике, в Далмации, умер 13 февраля 1787 г. в Милане, в Италии. Бошкович в 1760 г., еще при жизни Ломоносова, был избран почетным членом Петербургской Академии наук). В основном сочинении «Теория натуральной философии, приведенная к единому закону сил, существующих в природе», вышедшем в 1758 г., Бошкович рассматривает мир как совокупность точек (атомов, которые он мыслит как центры сил), взаимодействующих друг с другом с силами, модуль и направление которых меняется с расстоянием так, что притягательные силы переходят в отталкивательные, и наоборот. Гамильтон рассматривает его труд как переворот в механике, сделавший ее «более динамичной и сводящей все связи и действия тел к притяжению или отталкиванию точек». Именно эту идею Гамильтон кладет в основу своей системы. Но для того чтобы определить движение системы точек, надо интегрировать дифференциальные уравнения второго порядка, «число которых втрое больше числа притягивающихся или отталкивающихся точек». Естественно, что с увеличением числа точек эта задача необычайно усложняется, и для десяти точек, например, надо интегрировать тридцать дифференциальных уравнений второго поря дка. Гамильтон предлагает метод, в котором «задача сводится к отысканию и дифференцированию одной-един-ственной функции, удовлетворяющей двум уравнениям в частных производных первого порядка и второй степени». Эту функцию Гамильтон называет характеристической, она определяется интегралом где 2Т - «полная живая сила» сумма произведений масс частиц на квадраты их скоростей. Она связана с введенной Гамильтоном функцией Н, определяемой законом живой силы Т = U + Н, уравнением Соотношение Т = U + Н, где U - силовая функция, сейчас записывают в виде: H=T+U, где U - потенциальная энергия, отличающаяся от силовой функции U Гамильтона знаком. Во второй статье — «Второй очерк об общем методе в динамике», опубликованной в 1835 г., Гамильтон вводит вместо характеристической функции V главную функцию S. Он применяет свою знаменитую систему канонических уравнений, которая в современной форме, в случае консервативных сил, имеет вид: Число этих уравнений n (i = 1, 2, ., ., n) равно числу степеней свободы системы. Главная функция S вводится уравнением: Она сейчас носит название «действия», и канонические уравнения получаются из принципа наименьшего действия. Работам Гамильтона по динамике предшествовали его работы по оптике лучей, написанные им в период 1827— 1832 гг., под общим названием «Теория систем лучей». Гамильтону принадлежит заслуга в установлении оптико-механической аналогии, сыгравшей важную роль в истории создания волновой механики Шредингера. Метод Гамильтона в динамике был разработан и развит в «Л екциях по динамике» Карла ГуставаЯкоби (1804—1851). Якоби был родным братом русского академика Бориса Семеновича Якоби и сам был почетным членом Петербургской Академии наук. Теория Гамильтона—Якоби получила широкое применение в XX в. в решении задач атомной механики. Оператор Гамильтона, или «гамильтониан», является одним из основных операторов современной квантовой механики, и таким образом полузабытая физиками теория механики и оптики обрела новую жизнь в нашем столетии. Развитие механики в первой половине XIX столетия Прежде чем перейти к описанию событий в истории физики началаХ1Х столетия, расмотрим коротко развитие механики в первой половине XIX в. Трудами Эйлера, Лагранжа и других математиков и механиков XVIII в. сформировалась та отрасль математического естествознания, которая получила название теоретической механики. В качестве таковой она выделилась из физики, и ее развитие было более тесно связано с развитием математики, чем физики. В историю механики существенный вклад внесли и русские ученые: математик и механик М. В. Остроградский (1801-1862), имя которого встречается в физике в связи с теоремой Остроградского—Гаусса, П.Л.Чебышев (1821— 1894), А.М.Ляпунов (1857-1918) и многие другие. Деятельность европейских и русских механиков XIX в. рассматривается в истории механики, и мы на ней останавливаться не будем. Мы упомянем здесь коротко о некоторых механиках, работавших после Лагранжа, продолживших его дело и внесших в механику новые понятия, важные для физики. В 1803 г. вышел груд Луи Пуансо (1777—1859) «Элементы статики «Пуансо ввел новое динамическое понятие пары сил, изучил свойства пар, сформулировал общий закон сложения сил, действующих на тело, и общие условия равновесия. В1811 г. вышел «Трактат о механике» Симеона Пуассона (1781—1840). В этом трактате Пуассон развивает и популяризирует традиции Лагранжа, иллюстрируя общие предположения многочисленными примерами. «Трактат» Пуассона долгие годы служил учебным пособием по механике. Математик Жан Виктор Понселе (1788—1867), бывший солдат наполеоновской армии и русский военнопленный, ввел в механику важное понятие работы. Это понятие фигурирует и в «Трактате о механике твердых тел и о расчете действия машин» (1829.) Гас-пара Гюстава Кориолиса (1792—1843). Кориолис открыл также ускорение, испытываемое движущимися телами во вращающейся системе, и соответствующую силу инерции. Это ускорение ныне известно под названием «кориолисово ускорение», а сила — под названием «сила Кориодиса» (1835). В 1829 г. вышла работа знаменитого немецкого математика К. ф. Гаусса (1777—1855) «Об одном новом общем принципе динамики». В этом сочинении Гаусс предлагал положить в основу механики вместо принципа наименьшего действия другой, который он формулировал следующими словами: «Движение системы материальных точек, связанных между собою произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, т. е. оно происходит с наименьшим возможным принуждением, если в качестве меры принуждения, примененного в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины ее отклонения от того положения, которое она заняла бы, если бы была свободной». Следует отметить, что этой работе предшествовали многолетние геодезические и астрономические исследования Гаусса, в результате которых им был найден метод наименьших квадратов, играющий важную роль в теории ошибок и обработке экспериментальных данных. Сформулированный выше принцип наименьшего принуждения Гаусса близко подходит к методу наименьших квадратов: природа действует таким образом, что сумма квадратов отклонений движения точки от движения, невозмущенного действием сил, является минимальной. Особенно важную роль вариационный принцип наименьшего действия сыграл в работах У.Р.Гамильтона (1805-1865). Уильям Роуан Гамильтон ирландский математик и физик. С 1827 г. он был профессором астрономии в Дублинском университете и директором астрономической обсерватории университета. В 1834 г. Гамильтон выступил с программной статьей «Об общем методе в динамике, посредством которого изучение движений всех свободных систем притягивающихся или отталкивающихся точек сводится к отысканию и дифференцированию одного центрального соотношения или характеристической функции». Характеризуя развитие механики со времен Ньютона, Гамильтон выделяет учение славянского ученого Руджера Иосипа Бошковича, современника и ровесника Ломоносова, пережившего его более чем на двадцать лет (Бошкович родился 18 мая 1711 г. в Дубровнике, в Далмации, умер 13 февраля 1787 г. в Милане, в Италии. Бошкович в 1760 г., еще при жизни Ломоносова, был избран почетным членом Петербургской Академии наук). В основном сочинении «Теория натуральной философии, приведенная к единому закону сил, существующих в природе», вышедшем в 1758 г., Бошкович рассматривает мир как совокупность точек (атомов, которые он мыслит как центры сил), взаимодействующих друг с другом с силами, модуль и направление которых меняется с расстоянием так, что притягательные силы переходят в отталкивательные, и наоборот. Гамильтон рассматривает его труд как переворот в механике, сделавший ее «более динамичной и сводящей все связи и действия тел к притяжению или отталкиванию точек». Именно эту идею Гамильтон кладет в основу своей системы. Но для того чтобы определить движение системы точек, надо интегрировать дифференциальные уравнения второго порядка, «число которых втрое больше числа притягивающихся или отталкивающихся точек». Естественно, что с увеличением числа точек эта задача необычайно усложняется, и для десяти точек, например, надо интегрировать тридцать дифференциальных уравнений второго поря дка. Гамильтон предлагает метод, в котором «задача сводится к отысканию и дифференцированию одной-един-ственной функции, удовлетворяющей двум уравнениям в частных производных первого порядка и второй степени». Эту функцию Гамильтон называет характеристической, она определяется интегралом где 2Т - «полная живая сила» сумма произведений масс частиц на квадраты их скоростей. Она связана с введенной Гамильтоном функцией Н, определяемой законом живой силы Т = U + Н, уравнением Соотношение Т = U + Н, где U - силовая функция, сейчас записывают в виде: H=T+U, где U - потенциальная энергия, отличающаяся от силовой функции U Гамильтона знаком. Во второй статье — «Второй очерк об общем методе в динамике», опубликованной в 1835 г., Гамильтон вводит вместо характеристической функции V главную функцию S. Он применяет свою знаменитую систему канонических уравнений, которая в современной форме, в случае консервативных сил, имеет вид: Число этих уравнений n (i = 1, 2, ., ., n) равно числу степеней свободы системы. Главная функция S вводится уравнением: Она сейчас носит название «действия», и канонические уравнения получаются из принципа наименьшего действия. Работам Гамильтона по динамике предшествовали его работы по оптике лучей, написанные им в период 1827— 1832 гг., под общим названием «Теория систем лучей». Гамильтону принадлежит заслуга в установлении оптико-механической аналогии, сыгравшей важную роль в истории создания волновой механики Шредингера. Метод Гамильтона в динамике был разработан и развит в «Л екциях по динамике» Карла ГуставаЯкоби (1804—1851). Якоби был родным братом русского академика Бориса Семеновича Якоби и сам был почетным членом Петербургской Академии наук. Теория Гамильтона—Якоби получила широкое применение в XX в. в решении задач атомной механики. Оператор Гамильтона, или «гамильтониан», является одним из основных операторов современной квантовой механики, и таким образом полузабытая физиками теория механики и оптики обрела новую жизнь в нашем столетии. Развитие волновой оптики в первой половине XIX столетия Факты из истории оптики начала XIX столетия показывают, как трудно раскрыть закономерности развития науки, которое происходит не путем последовательной и плавной эволюции, а сплошь и рядом испытывает неожиданные скачки и потороты. Успехи ньютоновской механики XVIII в. оказали огромное влияние на все области физики, в том числе и на оптику. Несмотря на поддержку теории Гюйгенса Ломоносовым и защиту волновой теории света Эйлером, победа корпускулярной теории была бесспорной, а самый принцип Гюйгенса был забыт. Что касается открытых еще в XVII в. явлений дифракции и интерференции, то ведущие ученые конца XVIII — начала XIX в. не сомневались в том, что они получат исчерпывающее объяснение в терминах корпускулярной теории. Не удивительно, что гениальные исследования Юнга по интерференции и дифракции света были встречены с недоверием и даже с насмешкой, поскольку в них эти явления объяснялись с точки зрения волновой теории. Вскоре эти исследования получили мощную поддержку в работах Френеля, и волновая теория, несмотря на оппозицию ведущих ученых и необычайные трудности, вызванные открытием поляризации, восторжествовала. Юнг. Томас Юнг родился 13 июня 1773 г.Уже в двухлетнем возрасте он научился читать, в девятилетнем возрасте изучил латинский и греческий языки и к 14 годам в совершенстве знал до десяти языков, в том числе древнееврейский, персидский и арабский. Эти знания помогли ему позднее в работе по расшифровке египетских иероглифов. В дальнейшем Юнг изучал медицину, получив в 1795 г. степень доктора медицины. За два года до этого он опубликовал работу по физиологической оптике «Наблюдения над процессом зрения», в которой разработал теорию аккомодации глаза? В дальнейшем Юнг занимался проблемами волновой оптики, сформулировав в 1800 г. принцип суперпозиции волн и объяснив интерференцию света. Самый термин «интерференция» был введен в науку Юнгом. Его основной труд «Лекции по натуральной философии» вышел в 1807 г. в двух томах. Кроме волновой оптики, имя Юнга в физике связывается с важной константой теории упругости, так называемого «модуля Юнга», и теорией цветного зрения, основанной на допущении в сетчатой оболочке глаза трех сортов чувствительных волокон, соответствующих трем основным цветам. Заметим, что Юнг в своих «Лекциях» упоминает и труд Ломоносова «Слово о происхождении света». Юнг одним из первых ввел в физику термин «энергия». Разносторонность дарований Юнга изумительна. В его сочинениях рассматриваются вопросы механики, оптики, акустики, теплоты, физиологической оптики, технологии, кораблестроения, астрономии, навигации, геофизики, медицины, филологии, ботаники, зоологии и пр. Им было написано около 60 статей для «Британской энциклопедии ». Юнг был великолепным знатоком музыки, играл почти на всех музыкальных инструментах, прекрасно знал животных, был цирковым артистом — наездником и канатоходцем. Умер Юнг 10 мая 1829г. Волновая теория света сформулирована Юнгом в Бэкеровской лекции «Теория светаицвета», опубликованной в 1801 г. Она основана на следующих гипотезах: «I. Светоносный эфир, в высокой степени разреженный и упругий, заполняет вселенную. II. Волнообразные движения возбуждаются в этом эфире каждый раз, когда тело начинает светиться. III. Ощущение различных цветов зависит от различной частоты колебаний, возбуждаемых светом на сетчатке. IV. Все материальные тела притя-гивают эфирную среду, вследствие чего она накапливается в их веществе и на малом расстоянии вокруг них в состоянии большей плотности, но не большей упругости». Сущность волновой теории света Юнг кратко выражает следующим предложением: «Излучаемый свет состоитиз волнообразных движений светоносного эфира». Таким образом, все богатство красок природы было сведено Юнгом к колебательному движению эфира, а различие цветов — к различным частотам этих колебаний. Световые колебания распространяются в эфире от различных источников, не мешая друг другу, и если они в данной точке направлены одинаково, то «их совместное действие представляет комбинацию движений каждого из них». Этот принцип суперпозиции позволил Юнгу в 1802 г. найти «простой и общий закон», согласно которому «везде, где две части одного и того же света попадают в глаз по разным направлениям, свет становится или более сильным там, где разность путей есть целое кратное некоторой длины, и наименее сильным в промежуточных состояниях интерферирующих частей, и эта длина различна для света различных цветов». Так в оптике появился принцип интерференции. Этот принцип Юнг подтвердил на таком опыте. Солнечный свет, выходящий из небольшого отверстия в ставне окна, освещал экран, в котором кончиком булавки были сделаны два отверстия на небольшом расстоянии друг от друга. Свет, выходящий коническими пучками из обоих отверстий (Юнг знал дифракцию и формулировал ее в одной из работ 1801 г.), перекрещивался в некоторой области светового поля за экраном, и на приемном экране появлялись светлые и темные полосы. Когда закрывали одно из отверстий, то полосы исчезали и на приемном экране были видны лишь дифракционные кольца от другого отверстия. Измеряя ширину полос, Юнг смог определить ту «некоторую длину», которая фигурировала в его законе. Это были первые в истории физики определения длины волны, которая оказалась для красного света равной 0,7 мкм (Юнг измерял длину в дюймах), 0,42 мкм для крайнего фиолетового. Как мы знаем, интервалы в четверть длины волны измерял Ньютон в своем опыте с кольцами, но он не пользовался понятием длины световой волны. Юнг впервые сознательно определил длины световых волн и таким образом положил начало спектрометрии. Совершенно естественно, что Юнг обратился к опыту с кольцами Ньютона и правильно истолковал появление центрального темного пятна изменением фазы колебаний при отражении от более плотной среды. Юнг проверил свою теорию опытом, налив между линзой из кронгласа и пластинкой из флинтгласа каплю сассафрасового масла. В этой установке световой луч проходил последовательно через три среды в направлении убывания их показателей преломления, и центральное пятно стало белым. Юнгу было уже известно о существовании невидимых, инфракрасных лучей («тепловых»), открытых Вильямом Гершелем в 1800 г., и ультрафиолетовых («химических») лучей, открытых Иоганном Риттером и Волластоном в 1802 г. Юнг показал, спроектировав кольца Ньютона на бумагу, пропитанную ляписом, что и для ультрафиолетовых лучей справедлив принцип интерференции. На бумаге были обнаружены три темных кольца. Это была первая спектрограмма ультрафиолетового света. Как уже говорилось, теория Юнга была встречена с недоверием и в самой Англии подвергалась ожесточенным нападкам. Особенно суровое испытание ожидало волновую теорию в связи с открытием Малюса. Малюс. Этьенн-Луи Малюс родился 23 июня 1775 г. Он учился в Мезьерской инженерной школе, однако война помешала ему окончить школу; его мобилизовали в армию на фортификационные работы. Здесь его технические и организационные таланты были замечены, и он был направлен в только что организованную Политехническую школу, которую и окончил в 1796 г. Однако война не отпускала Малюса. Он принял участие в экспедиции Наполеона в Египет, откуда был направлен в Сирию, участвовал во взятии Яффы. В городе вспыхнула чума, и Малюс получил приказ остаться с больными и ранеными солдатами. Вскоре он сам заболел чумой. Все окружавшие Малюса люди умерли. «Я остался один—без сил, без помощи и друзей», — вспоминал он. Более месяца он провел в лазарете вместе с другими зачумленными, выздоровел и продолжал участие в египетском походе. После перемирия он вернулся на родину, продолжая военно-инженерную службу и интенсивно занимаясь наукой. В 1810 г. он стал членом Института, т. е. академиком. Однако ослабленный болезнью и тяготами военной жизни организм Малюса, подточенный вдобавок открывшимся туберкулезом, не выдержал, и 24 февраля 1812 г. он умер. Оптические исследования Малюса начались еще во время египетского похода, а в 1807 г. он представил в Академию два мемуара по оптике. Ему принадлежит теорема геометрической оптики: пучок лучей, нормальный к некоторой поверхности, остается таковым после произвольного числа отражений и преломлений. В 1808 г. в связи с конкурсной задачей Парижской Академии наук он сосредоточил свое внимание на явлении двойного лучепреломления. Размышляя над этим явлением, Малюс рассматривал однажды через кристалл исландского шпата отражение лучей заходящего солнца от стекол окон Люксембургского дворца и заметил, что одно из изображений исчезло. С наступлением темноты он повторил опыт со светом свечи, наблюдая через кристалл свет, отраженный от поверхности воды, и установил, что при определенных углах падения одно из изображений исчезает Тщательно исследуя явление, Малюс открыл в световом луче асимметрию, аналогичную поляризационным свойствам частиц. Идея о поляризационных свойствах корпускул была высказана еще Ньютоном. Малюс принял эту идею и ввел в оптику термин «поляризация света». Он установил, что поляризация света наблюдается для лучей, испытавших двойное преломление, и что эти лучи поляризованы во взаимно перпендикулярных плоскостях. Он установил также, что свет падающий на отражающую поверхность под определенным углом, поляризуется. Брюстер (1781-1868) в 1815 г. нашел, что этот угол полной поляризации удовлетворяет уравнению tgz = п, где п - показатель преломления отражающего вещества. В 1810 г. Малюс открыл закон изменения интенсивности поляризованного луча при прохождении через анализатор: интенсивность прошедшего света пропорциональна квадрату косинуса угла, образованного плоскостью поляризации луча с плоскостью главного сечения анализирующего кристалла. Открытие поляризации вдохновило сторонников корпускулярной теории света. Лаплас построил теорию двойного лучепреломления света в одноосных кристаллах, рассматривая двоякое Действие молекул кристалла на световые корпускулы.Он вывел также зависимость между скоростью необыкновенного и обыкновенного лучей и углом, образованным направлением обыкновенного луча с оптической осью. Био обощил закон Лапласа на двухосные кристаллы. Aparo открыл явление хроматической поляризации в одноосных кристаллах, а также вращение плоскости поляризации в кварце. Био обнаружил хроматическую поляризацию в сходящихся лучах сначала в одноосных, а потом в двухосных кристаллах (1813—1814) В 1815 г. он открыл законы вращения плоскости поляризации. Область оптических явлений необычайно расширилась, и назрела потребность в единой теории, объясняющей все разнообразие явлений света. Такая теория совершенно неожиданно для современников и в особенности для парижских академиков была создана инженером Огюстеном Френелем. Неожиданность заключалась в том, что эта теория была волновой, казалось бы, полностью скомпрометированной открытием Малюса и последующими открытиями поляризационных явлений. Френель. Огюстен Жан Френель родился 10 мая 1788 г. в Нормандии в семье архитектора. Отличаясь слабым здоровьем, Френель учился с трудом, однако рано обнаружил технические способности и шестнадцати с половиной лет поступил в Политехническую школу. Оттуда он перешел в Школу мостов и дорог, по окончании которой работал по ремонту и прокладке дорог в Вандее и других округах франции. Не чувствуя в себе организаторских способностей, Френель тяготился своей работой и пытался отвлечься научными занятиями то в области философии и богословия, то в области техники и химии. Наконец, прочитав сообщение о мемуарах Био, посвященных поляризации, он заинтересовался этим явлением и начал заниматься оптикой. Но политические события: бегство Наполеона с Эльбы и его победа — привели к отставке роялиста Френеля. С апреля 1815 г. до нового назначения в декабре 1815 г. он напряженно занимался научной работой и 15 октября 1815 г. представил в Академию наук свой первый мемуар по дифракции света. За первым трудом последовал ряд других, стяжавших Френелю мировую славу. В 1823 г. он был избран членом Академии наук. Но уже в 1824 г. болезнь заставила Френеля отойти от научной деятельности. 14 июля 1827 г. он умер. В своем первом мемуаре о дифракции света, «в котором специально изучается явление цветных каемок, наблюдающихся у теней, отбрасываемых телами, освещенными светящейся точкой», Френель рассматривает дифракцию от проволоки и отражение и преломление света с точки зрения волновой теории. Он начинает с критики корпускулярной теории света Ньютона. Френель считает сомнительным отсутствие взаимодействия световых частиц среды, в которой свет распространяется. А между тем свет распространяется в воздухе почти с неизменной скоростью. Различие в цветах нельзя объяснить различием в скоростях частиц, и, следовательно, приходится допустить «такое же количество сортов световых частиц, сколько имеется цветов или различных оттенков в солнечном спектре». «Приступы легкого отражения и легкого прохождения почти что необъяснимы в системе Ньютона», — пишет далее Френель. Он указывает, что явление двойного преломления «заставило Ньютона допустить еще новую гипотезу, которая является весьма необычайной, а именно что световые частицы имеют полюсы...». Вот это обилие гипотез и заставляет Френеля сделать вывод, что «теория колебаний лучше подходит для объяснения всех этих (т. е. световых. — П. К.) явлений, чем теория Ньютона». Наиболее существенным возражением против волновой теории было прямолинейное распространение света. «Это возражение, — пишет Френель,— единственное, на которое мне кажется затруднительным дать исчерпывающий ответ, привело меня к изучению размытых теней». С изумительной изобретательностью и мастерством Френель ставит опыты по дифракции света. Он получает светящуюся яркую точку с помощью «весьма выпуклой линзы», в качестве которой он «использовал шарик меда, помещенный на небольшом отверстии, сделанном в медном листе. Освещенная этим шариком железная проволока, каемки которой я измерял, давала еще весьма четкие изображения, даже в том случае, когда она находилась на расстоянии только одного сантиметра от световой точки». Френель показал, что дифракционные полосы являются результатом интерференции лучей, идущих от краев проволоки: «каемки образуются в результате перекрещивания этих лучей». Он нарисовал картину волнового интерференционного поля и показал, что «ширины этих каемок, измеренные на различных расстояниях от проволоки, являются не ординатами прямой линии, а ординатами гиперболы, абсциссами которой являются эти расстояния ». Ньютон в одном из писем, рассматривая некоторые вопросы акустики, изобразил пересекающиеся системы волн, распространяющихся от двух одинаковых источников. Ту же картину изображает теперь Френель, но источниками волн у него служат края препятствия. Френель ясно видит стационарное распределение максимумов и минимумов волнового поля, расположенных на гиперболоидах вращения. Ньютон этой картины не увидел, хотя в «Началах» описывает случай погашения волнового движения другим, находящимся в противофазе. Френель в своих опытах измерил длины волн различных цветов по формуле у=bd/2c, где у - ширина полосы, b - расстояние от проволоки до экрана, с -ширина проволоки, d - длина волны. Принцип интерференции дал возможность Френелю объяснить законы отражения и преломления тем, что световые колебания погашают друг друга для всех направлений, кроме направлений, удовлетворяющих закону отражения или закону Снеллиуса — Декарта. Из своей теории Френель сделал вывод, противоположный выводу Ньютона, а именно «что скорость света в стекле меньше, чем скорость света в воздухе». Опыты с кольцами Ньютона Френель воспроизвести не мог, не имея соответствующих линз. Однако в дополнениях ко второму мемуару, представленных в Академию наук 15 июля 1816 г., Френель уже описывает опыт с кольцами Ньютона и интерпретирует его в духе волновой теории. Здесь же он дает теорию интерференции в плоскопараллельных пластинках и выводит формулу для разности хода интерферирующих лучей, приводимую теперь во всех курсах физики (d = 2x cos i, где х -толщина пластинки, i - угол преломления). Наконец, в этом же дополнении он описывает свой классический опыт с зеркалами. Френель отмечает, что этот опыт удался ему лишь «после нескольких неудачных опытов». «Мимоходом замечу, — пишет он, — что лишь теория колебаний могла привести к идее постановки такого рода опыта. Этот опыт настолько труден, что почти невозможно, чтобы чистый случай на него натолкнул». Во втором мемуаре, опубликованном в мартовском номере «Анналов химии и физики», Френель воскрешает забытый принцип Гюйгенса: «Наиболее естественная гипотеза состоит в том, что молекулы тела, приведенные в колебание падающим светом, становятся центрами испускания новых волн». Дополняя принцип Гюйгенса принципом интерференции, Френель превращает геометрический принцип в физический и успешно решает с его помощью ряд дифракционных задач. Принцип интерференции, который Френель довольно неясно формулирует в своем первом мемуаре, был, как мы видели, уже сформулирован Юнгом, и Араго сказал об этом Френелю. Френель в своем письме к Араго от 23 сентября 1815 г. пишет, что он, не зная английского языка, не мог прочитать этой книги. Через месяц Френель сообщает Араго: «Очень простой эксперимент доказал мне, что световые лучи могут действовать друг на друга, ослабляться и даже почти совершенно погашаться, когда их колебания мешают друг другу, и, наоборот, добавляться и взаимно усиливаться, когда они колеблются согласно. На этом принципе я основываю мое объяснение дифракции». Френель совершенно независимо от Юнга пришел к принципу интерференции. Только от Араго он узнал о том, что то же самое открыл Юнг. Франсуа Доминик Араго (1786—1853) сыграл большую роль в развитии и пропаганде волновой теории. Он содействовал приезду Френеля в Париж в 1816 г., где в течение десяти месяцев Френель выполнял ряд опытов по дифракции и интерференции. В начале 1817 г. Парижская Академия наук предложила на премию задачу о дифракции, формулируя ее следующим образом: 1) определить с помощью точных опытов все эффекты дифракции световых лучей, прямых и отраженных, когда они проходят одновременно или раздельно вблизи границ одного или нескольких тел, ограниченных или бесконечных, принимая во внимание расстояния между этими телами, равно как и расстояние до источника света, откуда исходят лучи; 2) с помощью математической индукции вывести из этих опытов движения лучей при их прохождении вблизи тел». Сама формулировка задачи не оставляет сомнения, что авторы ее явно имели в виду корпускулярную теорию света. Их интересовала теория движений световых частиц вблизи самих дифрагирующих тел. Во взаимодействии световых корпускул с молекулами тел они усматривали «секрет физического процесса, благодаря которому лучи изгибаются и разделяются на различные полосы разного направления и интенсивности». Френель колебался, принять ли участие в конкурсе, но уговоры друзей и поддержка младшего брата фюльжанса, помогавшего ему в опытах, возымели свое действие. 20 апреля 1818 г. он представил в Академию наук в запечатанном конверте «Записку о теории дифракции». В первых же параграфах этой записки он показывает, что эмиссионная теория света не в состоянии объяснить явление дифракции. Молекулярные взаимодействия не распространяются на такие значительные расстояния, которые достигают полмиллиметра. Массы краев дифрагирующего тела не играют никакой роли; «...Нить и обушки бритвы дают совершенно одинаковые каемки». Френель описывает опыт с дифракцией света, проходящего между двумя близкими стальными пластинками, вертикальные края которых с одной стороны были острыми, а с другой — округленными. Он помещал острый край против закругления и наоборот и не заметил никакого изменения дифракционной картины: полосы были прямыми, как будто бы обе пластинки были обращены друг к другу одинаковыми краями. Из этого опыта следует, что явления дифракции совершенно необъяснимы с точки зрения эмиссионной теории. «Волновая теория, как мне кажется, наоборот, приводит к полному объяснению этих явлений при помощи принципа Гюйгенса, который можно сформулировать следующим образом: колебания световой волны в каждой из ее точек равны сумме всех элементарных движений, которые были бы посланы в один и тот же момент каждой действующей изолированной частью этой волны, рассматриваемой в каком-нибудь из своих предыдущих положений». Применяя свой расчет к случаю дифракции от края экрана, он находит «периодические изменения интенсивности света по мере того, как свет удаляется от края геометрической тени». Комиссия в составе Био, Араго, Лапласа, Гей-Люссака и Пуассона присудила премию мемуару под девизом «Natura simplex et fecunda» («Природа проста и плодотворна»), т. е. Френелю, написавшему этот девиз на конверте. При обсуждении работы возник следующий эпизод, описанный в докладе комиссии и прочитанный Араго: «Один из членов нашей комиссии — г-н Пуассон — вывел из сообщенных автором интегралов тот удивительный результат, что центр тени от круглого непрозрачного экрана должен бы быть таким же освещенным, как и в том случае, если бы экран не существовал, — это при условии, что лучи проникают в тень под малыми углами падения. Это следствие было проверено прямым опытом, и наблюдение полностью подтвердило данные вычисления». Расчеты Пуассона Араго проверил на опыте, превратив таким образом возражение Пуассона в убедительнейшее доказательство справедливости теории Френеля. Следует отметить, что свет в центре тени круглого экрана (шарика) наблюдал еще в 1715 г. Ж. Н.Делиль (1688-1768), бывший с 1726 по 1747 г. членом Петербургской Академии наук. Премированный мемуар Френеля о дифракции был в своей значительной части опубликован в двух статьях в «Анналах физики и химии» за 1819 г. Полностью он был напечатан в «Трудах Парижской Академии». Мемуар открывается рассмотрением двух систем, «которые до сего времени разделяли ученых в их воззрениях на природу света». Здесь интересен философский аргумент в пользу волновой теории, выраженный латинским эпиграфом «Природа проста и плодотворна» и принципом: природа создает максимум явлений при помощи минимума причин. Френель указывает, что хотя и «очень трудно открыть основания этой замечательной экономии», но этот «общий принцип философии физических наук... может направлять усилия человеческого ума». Конкретный материал мемуара Френеля очень богат. Он описывает опыты и измерения различных случаев дифракции и интерференции. При этом он постоянно обращает внимание на неудовлетворительность эмиссионной теории, на ее неспособность объяснить описываемые явления без противоречий и сомнительных допущений. Он показывает, что волновая теория легко объясняет эти явления путем суперпозиции волн, и выводит основную формулу интерференции: которая сегодня вошла во все учебники. Помимо интерференционного опыта с зеркалами, Френель описывает опыт с бипризмой. В этом же мемуаре он дает новую формулировку принципа Гюйгенса и развивает метод зон, ныне также вошедший во все учебники. Мемуар заполнен таблицами расчетов различных случаев дифракции. Особо автор разбирает дифракцию от круглого экрана и круглого отверстия, используя свой метод зон. Мемуар заканчивается объяснением преломления света по волновой теории. Теперь оставалось подчинить волновой теории явления поляризации и хроматической поляризации. Изучая интерференцию поляризованных лучей, Френель еще в 1816 г. отмечал, что волновая теория «пока что не дала объяснения явлению поляризации», и добавлял, что, по-видимому, для такого объяснения она должна быть видоизменена: «Эта модификация света состоит в попереч-ности световых волн». Однако предположение о поперечности световых волн, как отмечал Френель, «настолько противоречило принятым представлениям о природе колебания упругих жидкостей, что прошло немало времени, прежде чем я принял его окончательно». Юнг, «более смелый в своих предположениях», сообщил эту идею в письме к Араго от 12 января 1817 г. Но Френель, который пришел к идее поперечности световых волн раньше Юнга, не торопился публиковать ее. Он хорошо понимал, в какое противоречие вступает эта гипотеза с механикой упругих сред. Только тщательные эксперименты и прежде всего установленный ими Араго факт, что лучи, первоначально поляризованные во взаимно перпендикулярных плоскостях, не интернируют, даже если их привести к одной плоскости поляризации, заставили его принять гипотезу поперечности световых волн. Френель, высказав идею, ад поперечные колебания в линейно поляризованном свете совершаются в одной плоскости, перпендикулярнойплоскос-ти поляризации, определил обычный свет «как совокупность или, точнее, как быструю последовательность систем, поляризованных по различным направлениям волн». Акт поляризации, по Френелю, «состоит не в создании этих поперечных движений, а в разложении их по двум перпендикулярным неизменным направлениям и в от делении составляющих друг от друга». В этой смелой гипотезе, настолько смелой, что даже ревностный сторонник Френеля Араго отступил, не отважившись следовать за ним, мы видим один из ярких примеров тогода как наука идет от «явного для нас» к «явному по природе», вопреки сложившимся представлениям и традициям. Френель задал на многие годы головоломную задачу теоретикам, каким образом эфир, настолько тонкий, что не оказывает никакого сопротивления движению сквозь него небесных тел, вместе с тем не оказывает упругого сопротивления сжатию и расширению, а упруго сопротивляется только деформациям сдвига. Это свойство роднит его с твердым телом, а не с едкостью или газом, притом таким твердым телом, которое абсолютно несжимаемой не допускает продольных волн. Однако гипотеза поперечных волн позволила френелю построить теорию отражения и преломления света, а также теорию двойного преломления. В мемуаре «О расчете цветов, которые вызывает поляризация в кристаллических пластинках», опубликованном в «Анналах физики и химии» за 1821 г., Френель излагает основы своей теории поляризации. Он рисует картину поперечных колебаний частиц упругой среды. «Очевидно, — пишет Френель, — что к этим новым колебаниям, перпендикулярным лучам, можно применять те же рассуждения и вычисления, которые применяются в случае, когда колебательное движение происходит вдоль направления распространения». Это дает ему возможность применить к поляризованному свету принцип интерференции и таким путем «объяснить многие оптические явления ». В частности, Френель строит теорию поляризации света при отражении, считая, что при переходе света из одной прозрачной среды в другую упругость эфира не меняется, а меняется его плотность. Вначале он рассчитывает интенсивность отраженного света, поляризованного в плоскости падения, но в добавлении к статье рассматривает и случай отражения света, поляризованного перпендикулярно плоскости падения. В мемуаре о двойном преломлении, представленном в Академию наук 9 декабря 1822 г., Френель описывает новый поляризационный прибор—стеклянный параллелепипед, известный ныне под названием «параллелепипед Френеля». В этом приборе предварительно поляризованный свет «последовательно, на двух противоположных сторонах, претерпевает два полных внутренних отражения при (предельном) угле падения приблизительно в 50° и в плоскости, наклоненной на 45° к первоначальной плоскости поляризации». При этом выходящий из стеклянного параллелепипеда свет «является как будто полностью деполяризованным»... Френель выясняет, что на самом деле этот свет «можно рассматривать как состоящий из двух пучков, следующих по одному и тому же пути, но поляризованных в перпендикулярных направлениях и отличающихся в своем ходе на четверть длины волны». Такой свет Френель называет поляризованным по кругу, а самую поляризацию — круговой (циркулярной) поляризацией. «Между прямолинейной и круговой поляризациями существует множество промежуточных степеней различных поляризаций, которые обладают характерными свойствами обеих этих поляризаций и которым, исходя из тех же теоретических соображений, можно было бы дать наименование эллиптических поляризаций». Таким образом, Френель на языке волновой теории полностью описал явление поляризации, и введенные им понятия сохраняют свое значение и сейчас. Он указал методы экспериментального анализа поляризации света, используемые и поныне. К своим опытам он прибавил изящный метод разделения лучей, поляризованных по кругу, в противоположные стороны. Воспользовавшись наблюдением Био, что существуют две модификации кварца (горного хрусталя, по тогдашней терминологии), из которых одна вращает плоскость поляризации вправо, а другая влево, он составил призму из трех частей; входной и выходной одного сорта, промежуточной — другого. Предполагая, что скорости распространения света, поляризованного по кругу влево и вправо, в различных сортах кварца различны, он нашел, что линейно поляризованный свет в такой составной призме разделится на два поляризованных по кругу луча. Они выйдут из выходной призмы, отклонившись в противоположные стороны. «...Мы получаем этим способом весьма заметное разделение двух изображений, которое можно было бы еще увеличить, умножая число призм», — пишет Френель. 7 января 1823 г. Френель представил Академии наук «Мемуар о законе модификаций, которые сообщаются отражением поляризованному свету». Здесь он дает механическое обоснование формул отражения света, поляризованного в плоскости падения, и света, поляризованного в плоскости, перпендикулярной плоскости падения. Если положить, что свет поляризован в плоскости, составляющей с плоскостью падения угол а, и амплитуда колебаний равна 1, то амплитуда составляющей в плоскости падения будет sin а, а составляющей в плоскости, перпендикулярной плоскости падения, будет cos a. Амплитуды соответствующих составляющих отраженного света будут: где i - угол падения, i' — угол преломления. Углы падения и преломления связаны, по Френелю, соотношением: где d - плотность первой среды, d' — плотность второй среды, упругость же эфира в обеих средах Френель принимает одинаковой. Из своих формул Френель выводит закон Малюса— Брюстера. Он обосновывает свои формулы законом сохранения живых сил и гипотезой, что движения, параллельные границе раздела, в обеих волнах одинаковы. Из формул Френеля вытекает поворот плоскости поляризации в отраженной и преломленной волнах. Весьма замечательно, что Френель распространил свои формулы и на случай полного отражения, смело введя мнимые величины: для углов, больших предельного, sin i' становится больше 1, а cos i' — мнимым. Френель исходит при этом из того, что формулы, справедливые до предельного угла, должны «в силу общего закона непрерывности» быть правильными и при переходе через этот предел, однако «затруднение заключается в том, как их интерпретировать и как разгадать то, что возвещает анализ в этих мнимых выражениях». Френель разгадал, что же означает мнимое выражение: оно означает изменение фазы в отраженной волне. Оба компонента испытывают скачки разной величины. Поразительно, как много сделал Френель за столь короткое время. Им по существу была полностью создана классическая волновая оптика. К описанным выше результатам следует добавить его теорию распространения света в одноосных и двухосных кристаллах, развитую в работах о двойном лучепреломлении в 1821—1822 гг. Френель развил идеи Гюйгенса о распространении волн в одноосных кристаллах. Идеи Гюйгенса он настолько высоко ценил, что ставил их выше всех открытий в оптике Ньютона, утверждая, что открытие Гюйгенса, «быть может, труднее сделать, нежели все открытия Ньютона в области явлений света». Несомненно, что в этом утверждении отразился характер борьбы с эмиссионной теорией, которую вел Френель во всех своих оптических работах. Для описания распространения света в кристаллах Френель ввел замечательное построение: эллипсоид упругости Френеля. Он установил, что в анизотропной кристаллической среде всегда существуют три прямоугольные оси упругости. Он строит эллипсоид упругости, который дает закон изменения упругости анизотропной среды и скоростей для различных направлений распространения волн. Этот эллипсоид имеет две диаметральные плоскости, пересекающие его по кругам. Для волн, плоскости которых параллельны этим кругам, всегда имеется одна скорость распространения, каково бы ни было направление их колебаний. Эти направления Френель назвал оптическими осями и показал, что никогда не бывает более двух оптических осей в анизотропных средах. Для одноосных кристаллов поверхность упругости становится поверхностью вращения. Френель заложил, таким образом, основы кристаллооптики. О том, насколько плодотворным оказался предложенный им метод можно судить по тому, что в 1832 г. Гамильтон вывел из его теории следствие о существовании в двухосных кристаллах тонкого явления — конической рефракции. Если в таких кристаллах пучок света идет по направлению оптической оси, то он выходит из кристаллической пластинки в виде полого светового конуса (внешняя коническая рефракция). Конический пучок внутри кристалла выходит параллельным цилиндрическим пучком. Это явление невозможно обнаружить эмпирически, без помощи теории. Ллойд открыл его в том же 1832 г. экспериментально, руководствуясь теорией Френеля — Гамильтона. Это открытие было блестящим триумфом волновой теории света. В истории физики важную роль сыграло опубликованное в 1818 г. в «Анналах химии и физики» письмо Френеля Араго по вопросу о влиянии движения Земли на оптические явления. Араго пытался обнаружить это явление, измеряя разность зенитных расстояний звезды, наблюдаемой непосредственно и через призму. Араго такого влияния не обнаружил. Это дало повод Френелю обсудить на основании волновой теории вопрос о влиянии движения Земли на распространение света в преломляющей среде. Френель знает, что «скорость, с которой распространяется волна, не зависит от движения тела, которое ее испускает». Он полагает, что результат Араго можно объяснить, если предположить, «что эфир свободно проходит через земной шар и что скорость, сообщенная этой тонкой жидкости, представляет собой только небольшую часть скорости Земли и не превышает, например, одной сотой доли этой скорости». Эта гипотеза частичного увлечения эфира помогла Френелю объяснить, почему «видимая рефракция не изменяется с изменением направления световых лучей по отношению к движению Земли», как это обнаружил Араго и позднее Эйри (1801-1892). При этом Френель полагает, что квадраты длин волн в эфире и преломляющей среде относятся как плотности этих двух сред: Отсюда коэффициент увлечения где ? —показатель преломления среды.(Если брусок с плотностью эфира А' перемещается со скоростью v параллельно своей образующей, то в нем ежесекундно происходит изменение плотности эфира v(Д' — д). Jo же изменение происходит, если предположить, что весь эфир А' движется со скоростью v1 = kv. Приравняв оба выражения v(Д'— Д) —Л»Д', получим формулу Френеля) Френель показывает, что аберрационный эффект не изменится, если трубу телескопа заполнить водой, что и было подтверждено опытом Эйри в 1871 г. Идея этого опыта принадлежала Бошко-вичу. формула же коэффициента увлечения была подтверждена в 1851 г. опытом физо, повторенным в 1886 г. Майкельсоном, производившим этот опыт с Морли, и в 1914 г. Зееманом. Таковы важнейшие результаты, полученные Френелем в оптике. Следует добавить, что Френель не ограничивался теоретическими исследованиями, он стремился сочетать их с экспериментом. Так, всемирную известность приобрела изобретенная им система освещения маяков, в которой важнейшей составной частью была сконструированная им ступенчатая линза, описанная в ме-муаре, представленном в Академию наук 29 июля 1822 г. Фраунгофер. Современником Френеля был немецкий оптик Йозеф фраунгофер (1787—1826). Сын бедного баварского стекольщика, он рано начал трудовой путь, работая вместе с отцом по стекольному делу, фраунгофер до 14 лет был неграмотным. Оставшись к 12 годам круглым сиротой, он был определен учеником в зеркальную и стекольную мастерскую. Он попал в аварию, когда рухнули два ветхих дома, в том числе и дом с мастерской, и жильцы оказались погребенными под обломками. Все погибли, и лишь четырнадцатилетнего фраунго-фера откопали в очень тяжелом состоянии. Этот случай имел, однако, и благоприятные для Фраунгофера последствия. Очевидец катастрофы банкир Утцшнейдер стал оказывать покровительство фраунгоферу, и тот смог, продолжая работать в мастерской, посещать воскресную школу. Упорный труд превратил фраунгофера в хорошего мастера оптического стекла, и в 1806 г. Утцшнейдер определил его в Оптико-механический институт, принадлежавший фирме Рейхенбаха, Утцшнейдера и Либгерра. Мастерство и талант помогли Фраунгоферу быстро сделать карьеру. Через год, в 1807 г. он становится оптиком института, через два — совладельцем фирмы, еще через два года он стоит во главе всей баварской оптической промышленности. Созданная им оптическая фирма «Утцшнейдер и Фраунгофер» получила мировую славу, производя первоклассные оптические инструменты. Так фраунгофер прошел путь от бедного неграмотного сироты, ученика стекольного ремесленника, до владельца мировой оптической фирмы, профессора и академика. Два открытия в оптике обессмертили имя фраунгофера. В 1802 г. Волластон наблюдал в спектре Солнца семь темных линий. Он считал их границами отдельных цветных участков и не исследовал подробно. Только после того как фраунгофер детально изучил это явление (1814—1815) и описал его в 1817 г., в физике появился термин «фраунгоферовы линии», который сохранился до настоящего времени, фраунгофер зафиксировал большое число темных линий и важнейшие из них обозначил буквами. Вторым фундаментальным открытием фраунгофера была дифракция в параллельных лучах и изобретенная им дифракционная решетка.( Американец Риттенхауз открыл принцип дифракционной решетки в 1785 г (См.. Вольф Э., Борн М Основы оптики. — М.: Наука, 1970, с. 443) ) Теория решетки с волновой точки зрения была дана в монографии Шверда (1792 — 1871) «Явления дифракции, выведенные аналитически из фундаментальных законов волновой теории», вышедшей в свет в 1835 г., через 9 лет после смерти фраунгофера. Таким образом, фраунгофер сделал после Ньютона новый важный шаг в развитии спектроскопии, подготовив почву для открытия Кирхгофа и Бунзена. Скорость света. Успехи оптики первой половины XIX столетия не ограничились открытиями, описанными выше. Совершенствование экспериментальной техники позволило взяться за решение задачи, поставленной Галилеем: определить прямыми методами скорость света. Задача эта была решена в середине века почти одновременно двумя французскими физиками: Ипполитом физо (1819-1896) и Леоном Фуко (1819-1868). физо разработал технически идею Галилея. Прерывание светового потока, идущего от источника света, он осуществил автоматически — вращением зубчатого колеса. Пучок света, пройдя через промежуток между зубцами, распространяется на некоторое расстояние (в опыте физо около 9 км), отражается от зеркала и идет обратно. Если колесо неподвижно, он попадет в тот же промежуток и направится в глаз наблюдателя. Если же колесо вращается, то в зависимости от скорости вращения отраженный пучок попадет либо на зубец, либо в следующий промежуток. Меняя скорость вращения колеса и измеряя число его оборотов, можно определить промежуток времени между двумя прохождениями света и скорость света. физо провел свой опыт в 1849 г., получив для скорости света значение 313000км/с. В установке Фуко применен метод вращающегося зеркала. Особенностью этого метода была возможность сравнения скорости света в воздухе и воде. Первые же наблюдения, проведенные в 1850 г., показали, что скорость света в воде меньше, чем в воздухе. Этот результат рассматривался в то время как решающий аргумент в пользу волновой теории, так что первая половина XIX в. ознаменовалась решительной победой волновой оптики Гюйгенса— Френеля. Корпускулярная теория была сдана в архив. Но через полвека ее идеи вновь привлекли внимание физиков. Рис. 29. Параллелепипед Френеля Рис. 30. Призма Френеля Возникновение электродинамики и её развитие до Максвелла Успехи электростатики, завершившиеся открытием количественного закона электрических взаимодействий, казалось, предопределили дальнейший путь развития науки об электричестве: накопление экспериментальных фактов в области электростатики, усовершенствование электростатических машин и электрометров, построение математической теории электростатических и магнитостатических взаимодействий. Все это, действительно, и происходило: накапливались новые факты, усовершенствовались приборы и аппараты, появились чувствительные электроскопы, в частности электроскоп Вольты с соломинками, снабженный конденсатором (1782), электроскоп Беннета с золотыми листочками (1787). Вольта установил связь между количеством электричества, емкостью и напряжением. Под термином «напряжение» он понимал «усилие, производимое каждой точкой наэлектризованного тела, чтобы избавиться от имеющегося в ней электричества и передать его другим телам, каковому усилию соответствуют, вообще говоря, проявления притяжения, отталкивания и т. д. и, в частности, степень расхождения листочков электрометра». Рис. 31. Схема опыта измерения скорости света по Физо Физики впоследствии отметили заслугу Вольты во введении в науку такого важного понятия, как «напряжение», присвоением единице электрического напряжения наименования вольт. Вольта подготовил и создание электрической машины, основанной на новом принципе, изобретением своего электрофора в 1775 г. Этот прибор и Доныне составляет принадлежность Школьных физических кабинетов. Электрофорные машины появились в середине XIX в. Математическая теория электростатики успешно разрабатывалась Пуассоном, Грином, Гауссом и другими учеными. Однако — и этого никто не мог предвидеть—конец XVIII в. ознаменовался революционным переворотом в науке об электричестве, имевшим неисчислимые научные, технические и общекультурные последствия. Речь идет об открытии электрического тока. Это открытие произошло случайно, но оно уже было подготовлено всем ходом предыдущего развития науки об электричестве. Физиологические действия электричества, открытие электрических свойств ската заинтересовали врачей и физиологов. Естественно было ожидать, что электричество и магнетизм окажутся полезными во врачебной практике, и тот факт, что у итальянского врача Луиджи Гальвани оказалась электрическая машина, вполне соответствовал духу времени. Гальвани. Луиджи Гальвани родился в Болонье 9 сентября 1737 г. Он изучал сначала богословие, а затем медицину, физиологию и анатомию. В 1762 г. он был уже преподавателем медицины в Болонском университете. В 1791 г. в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Через несколько лет войска генерала Бонапарта захватили Италию, в том числе и Болонью, и была образована Цизальпинская республика. Все государственные служащие должны были принести присягу на верность республике. Гальвани отказался это сделать, и в 1797 г. он был уволен в отставку В уважение к его заслугам правительство республики восстановило его в должности, но было уже поздно. Гальвани, удрученный переживаниями (он потерял жену, затем брата), не мог оправиться и 4 декабря 1798 г. окончил свой жизненный путь. Сделанное им открытие навсегда сохранило его имя в благодарной памяти человечества. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин доныне сохраняется в названии некоторых аппаратов и процессов. Свое открытие сам Гальвани описывает следующим образом: «Я разрезал и препарировал лягушку... и, имея в виду совершенно другое, поместил ее на стол, на котором находилась электрическая машина..., при полном разобщении от кондуктора последней и на довольно большом расстоянии от него. Когда один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки, то немедленно все мыщцы конечностей начали так сокращаться, что казались впавшими в сильнейшие тонические судороги Другой же из них, который помогал нам в опытах по электричеству, заметил, как ему казалось, что это удается тогда, когда из кондуктора машины извлекается искра... Удивленный новым явлением, он тотчас же обратил на него мое внимание, хотя я замышлял совсем другое и был поглощен своими мыслями. Тогда я зажегся невероятным усердием и страстным желанием исследовать это явление и вынести на свет то, что было в нем скрытого». Это классическое по точности описание неоднократно воспроизводилось в исторических работах и породило многочисленные комментарии. Гальвани честно пишет, что явление впервые заметил не он, а два его помощника. Считается, что «другим из присутствующих», указавшим, что сокращение мышц наступает при проскакивании искры в машине, была его жена Лючия. Гальвани был занят своими мыслями, а в это время кто-то начал вращать ручку машины, кто-то дотронулся «легко» скальпелем до препарата, кто-то заметил, что сокращение мышц наступает при проскакивании искры. Так в цепи случайностей (все действующие лица вряд ли сговаривались между собой) родилось великое открытие. Гальвани отвлекся от своих мыслей, «сам, стал трогать острием скальпеля то один, то другой бедренный нерв, в то время как один из присутствовавших извлекал искру, феномен наступал точно таким же образом». Как видим, явление было очень сложным, вступали в действие три компонента: электрическая машина, скальпель, препарат лапки лягушки. Что является существенным? Что произойдет, если одного из компонентов не будет? Какова роль искры, скальпеля, лягушки? На все эти вопросы и пытался получить ответ Гальвани. Он ставил многочисленные опыты, в том числе и на улице во время грозы. «И вот, замечая иногда, что препарированные лягушки, которые были подвешены на железной решетке, окружавшей балкон нашего дома, при помощи медных крючков, воткнутых в спинной мозг, впадали в обычные сокращения не только в грозу, но иногда также при спокойном и ясном небе, я решил, что эти сокращения вызываются изменениями, происходящими днем в атмосферном электричестве». Гальвани описывает далее, как он тщетно ожидал этих сокращений. «Утомленный, наконец, тщетным ожиданием, я начал прижимать медные крючки, воткнутые в спинной мозг, к железной решетке» и здесь обнаружил искомые сокращения, происходившие без всяких изменений «в состоянии атмосферы и электричества». Гальвани перенес опыт в комнату, поместил лягушку на железную пластинку, к которой стал прижимать проведенный через спинной мозг крючок, тотчас же появились сокращения мышц. Вот это и было решающим открытием. Гальвани понял, что перед ним открылось что-то новое, и решил тщательно исследовать явление. Он чувствовал, что в таких случаях «легко ошибиться с исследованиями и считать виденным и найденным то, что мы желаем увидеть и найти», в данном случае влияние атмосферного электричества Он перенес препарат «в закрытую комнату, поместил на железной пластинке и стал прижимать к ней проведенный через спинной мозг крючок». При этом «появились такие же сокращения, такие же движения». Итак, нет электрической машины, нет атмосферных разрядов, а эффект наблюдается, как и прежде «Разумеется, — пишет Гальвани, — подобный результат вызвал в нас немалое удивление и начал возбуждать в нас некоторое подозрение об электричестве свойственном самому животному». Что бы проверить справедливость такого «подозрения», Гальвани проделывает серию опытов, в том числе и эффектный опыт, когда подвешенная лапка, касаясь серебряной пластинки, сокращается, поджимается вверх, затем падает, вновь сокращается и т. д. «Так что эта лапка, — пишет Гальвани, — к немалому восхищению наблюдающего за ней, начинает, кажется, соперничать с каким-то электрическим маятником». Подозрение Гальвани превратилось в уверенность: лапка лягушки стала для него носителем «животного электричества», уподобляясь заряженной лейденской банке. «После этих открытий и наблюдений мне казалось возможным без всякого промедления заключить, что это двойственное и противоположное электричество находится в самом животном препарате». Он показал, что положительное электричество находится в нерве, отрицательное — в мышце. Вполне естественно, что физиолог Гальвани пришел к выводу о существовании «животного электричества». Вся обстановка опытов толкала к этому выводу. Но физик, поверивший сначала в существование «животного электричества», вскоре пришел к противоположному выводу о физической причине явления. Этим физиком был знаменитый соотечественник Гальвани Алессан-дро Вольта. Вольта. Алессандро Вольта родился 18 февраля 1745 г. в небольшом итальянском городе Комо, расположенном вблизи озера Комо, недалеко от Милана. В нем рано проснулся интерес к изучению электрических явлений. В 1769 г. он публикует работу о лейденской банке, через два года — об электрической машине. В 1774 г. Вольта становится преподавателем физики в школе в Комо, изобретает электрофор, затем эвдиометр и другие приборы. В 1777 г. он становится профессором физики в Павии. В 1783 г. изобретает электроскоп с конденсатором, а с 1792 г. усиленно занимается «животным электричеством». Эти занятия привели его к изобретению первого гальванического элемента. В 1800 г. он построил первый генератор электрического тока — вольтов столб. Это изобретение доставило ему всемирную славу. Он был избран членом Парижской и других академий, Наполеон сделал его графом и сенатором Итальянского королевства. Но в науке Вольта после своего великого открытия уже не сделал ничего значительного. В 1819 г. он оставил профессуру и жил в своем родном городе Комо, где и умер 5 марта 1827 г. (в один день с Лапласом и в один год с Френелем). Начав в 1792 г. работу над «животным электричеством», Вольта повторил и развил опыты Гальвани, полностью приняв его точку зрения. Но уже в одном из первых писем, посланном из Милана 3 апреля 1792 г., он указывает, что мышцы лягушки очень чувствительны к электричеству, они «поразительно реагируют на электричество», совершенно неуловимое даже для электроскопа Бен-нета, наиболее чувствительного из всех (сделанного из двух полосок тончайшего листового золота или серебра). Здесь начало последующего утверждения Вольты, что «препарированная лягушка представляет, если можно так выразиться, животный электрометр, несравненно более чувствительный, чем всякий другой самый чувствительный электрометр». Вольта в результате длинного ряда опытов пришел к выводу, что причиной сокращения мышц служит не «животное электричество», а контакт разнородных металлов. «Первоначальной причиной этого электрического тока,— пишет Вольта, — каков бы он ни был, являются сами металлы вследствие того, что они различны. Именно они в собственном смысле слова являются возбудителями и двигателями, тогда как животный орган, сами нервы являются лишь пассивными». Электризация при контакте раздражает нервы животного, приводит мышцы в движение, вызывает ощущение кислого вкуса на кончике языка, помещенного между станиолевой бумагой и серебряной ложкой, при контакте серебра и олова. Таким образом, Вольта считает причины «гальванизма» физическими, а физиологические действия — одними из проявлений этого физического процесса. Если кратко формулировать на современном языке мысль Вольты, то она сводится к следующему: Гальвани открыл физиологическое действие электрического тока. Естественно, что между Гальвани и Вольта разгорелась полемика. Гальвани для доказательства своей правоты пытался начисто исключить физические причины. Вольта же, наоборот, полностью исключил физиологические объекты, заменив лапку лягушки своим электрометром. 10 февраля 1794 г. он пишет: «Что вы думаете о так называемом животном электричестве? Что касается меня, то я давно убежден, что все действие возникает первоначально вследствие прикосновения металлов к какому-либо влажному телу или к самой воде. В силу такого соприкосновения электрический флюид гонится в это влажное тело или в воду от самих металлов, от одного больше, от другого меньше (больше всего от цинка, меньше всего от серебра). При установлении непрерывного сообщения между соответствующими проводниками этот флюид совершает постоянный круговорот». Таково первое описание замкнутой цепи электрического тока. Если цепь разорвать и в место разрыва вставить в качестве соединительного звена жизнеспособный нерв лягушки, то «управляемые такими нервами мышцы... начинают сокращаться, как только замыкается цепь проводников и появляется электрический ток». Как видим, Вольта уже пользуется таким термином, как «замкнутая цепь электрического тока». Он показывает, что присутствие тока в замкнутой цепи можно обнаружить и вкусовыми ощущениями, если ввести в цепь кончик языка. «И эти ощущения и движения тем сильнее, чем дальше отстоят друг от друга примененные два металла в том ряду, в каком они поставлены здесь: цинк, оловянная фольга, обыкновенное олово в пластинках, свинец, железо, латунь и различного качества бронза, медь, платина, золото, серебро, ртуть, графит». Таков этот знаменитый «ряд Вольты» в его первом наброске. Вольта разделил проводники на два класса. К первому он отнес металлы, ко второму—жидкие проводники. Если составить замкнутую цепь из разнородных металлов, то тока не будет — это следствие закона Вольты для контактных напряжений. Если же «проводник второго класса находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов, то вследствие этого возникает электрический ток того или иного направления ». Вполне естественно, что именно Вольте принадлежит честь создания первого генератора электрического тока, так называемого вольтова столба (сам Вольта называл его «электрический орган»), оказавшего огромное влияние не только на развитие науки об электричестве, но и на всю историю человеческой цивилизации. Вольтов столб возвестил о наступлении новой эпохи — эпохи электричества. Рис. 32. Электрофор Вольта Триумф вольтова столба обеспечил безоговорочную победу Вольты над Гальвани. История поступила мудро, определив победителя в этом споре, в котором обе стороны были правы, каждый с своей точки зрения. «Животное электричество» действительно существует, и электрофизиология, отцом которой был Гальвани, сейчас занимает важное место в науке и практике. Но во времена Гальвани электрофизиологические явления еще не созрели для научного анализа, и то, что Вольта повернул открытие Гальвани на новый путь, было очень важно для молодой науки об электричестве. Исключив жизнь—это сложнейшее явление природы—из науки об электричестве, придав физиологическим действиям лишь пассивную роль реагента, Вольта обеспечил быстрое и плодотворное развитие этой науки. В этом состоит его бессмертная заслуга в истории науки и человечества. Рис. 33. Приборы Вольта Рис. 34. Вольтов столб В. В. Петров. Сразу после получения сообщений о новом приборе начались опыты по его изготовлению и изучению действий электрического тока. Так английские химики Вильям Никольсон (1753—1815) и Карлейль (1768—1840), построив вольтов столб из 17 элементов, осуществили электролиз воды. Так были открыты химические действия тока, особенно успешно исследовавшиеся знаменитым английским химиком Гэмфри Дэви (1778— 1829). Дэви открыл путем электролиза щелочные металлы калий и натрий (1807). Одной из первых монографий, посвященных описанию нового источника тока и опытов с ним, была монография русского физика Василия Владимировича Петрова «Известие о гальвани-вольтовских опытах», вышедшая в Петербурге в 1803 г. Василий Владимирович Петров родился в г. Обояни Белгородской губернии 8 июля 1761 г. в семье священника. Петров учился сначала в Харькове, а затем, в 1786—1788 гг., в Петербургской учительской семинарии. По окончании семинарии Петров работал преподавателем Горного училища при Колывано-Воскресенских заводах на Алтае. Здесь когда-то трудился и русский механик И.И.Ползунов, представивший в 1763 г. начальнику Колывано-Воскресенских заводов докладную записку о своей паровой машине. Петров проработал на Алтае до 1791 г. В этом году он возвратился в Петербург, где преподавал физику в Инженерном училище и математику в Главном врачебном училище. В 1795 г. он стал экстраординарным профессором физики врачебного училища, которое в 1798 г. было преобразовано в Медико-хирургическую академию. Здесь Петров создал богатый физический кабинет, провел многочисленные опыты, на основе которых написал монографии: «Собрание физико-химических новых опытов и наблюдений» (1801), «Известие о гальвани-вольтовских опытах» (1803), «Новые электрические опыты» (1804). В 1802 г. Петров был избран членом-корреспондентом Петербургской Академии наук, в 1807 г. — адъюнктом по физике, в 1809 г. — экстраординарным академиком, в 1815 г. — ординарным академиком по кафедре физики. Рис. 35.Титульный лист книги В.В. Петрова Петров настойчиво боролся за создание физического кабинета при академии, но все его начинания встречали яростное сопротивление руководства. В 1827 г. Петрова отстранили от руководства кабинетом. В.В.Петров умер в Петербурге 22 июля 1834 г. Труд Петрова, посвященный изучению гальвани-вольтовских явлений, носит следующее полное заглавие: «Известие о гальвани-вольтовских опытах, которые производил профессор физики Василий Петров посредством огромной наипаче баттереи, состоящей иногда из 4200 медных и цинковых кружков и находящейся при Санкт-Петербургской Медико-хирургической академии ». Так, уже из заглавия видно, что Петров построил самую мощную по тому времени батарею, составленную из 2100 гальванических элементов. Он заменил термин «вольтов столб» термином «гальвани-вольтовская батарея» (Петров пишет «баттерея»)в честь Галь-вани и Вольты. Он поставил своей главной задачей «описать по-российски и расположить в надлежащем порядке деланные самим мною важнейшие и любопытнейшие опыты посредством гальвани-вольтовской баттереи». Но начинает он с описания устройства самой батареи и практических указаний по ее изготовлению и уходу за ней. Медные и цинковые кружки, составляющие батареи, имели диаметр «около одного с половиной дюйма» (около 3,8 см). Между металлическими кружками прокладывались не суконные, как у Вольты, а картонные кружки, пропитанные раствором нашатыря. Каждый элемент состоял из трех кружков: медного, картонного, цинкового, которые складывались в столбик из десяти и более элементов. В отличие от вертикального расположения вольтова столба Петров предлагает располагать элементы горизонтально, так, чтобы кружки стояли ребром вертикально в сухих узких деревянных ящиках. Петров указывает и способы изоляции элементов от дерева посредством сургуча, предлагает помещать тела, над которыми производятся опыты, на скамеечку со стеклянными ножками. Его «огромная наипаче баттерея» состояла из четырех рядов, каждый 10 футов длиной (свыше 3 м), соединяемых последовательно с помощью медных скобок. Если эти ряды вытянуть в один ряд, то он имел бы длину в сорок футов, «или в пять наших саженей и пять футов», т. е. свыше 12 м. Петров замечает, что такую батарею «с довольным основанием можно называть огромною». Крайний медный кружок первого ряда и последний цинковый кружок четвертого ряда Петров называет «медным и цинковым полюсами баттереи». Ток от батареи получается при соединении полюсов проводниками, которые должны быть хорошо изолированы, например продеты через стеклянные трубки. Описав устройство батареи, Петров описывает далее способ ухода за нею, средства очистки кружков от окислов. Все эти советы, очень подробные, вплоть до указания цен, показывают, что Петров предназначал свою книгу для активного читателя, который мог бы сам воспроизвести описываемые эксперименты. Книга Петрова не только научная монография, но и практические руководство по технике эксперимента. Петров выступает в ней не только как ученый, но и как учитель, стремящийся ввести своих читателей в лабораторию научного творчества в самой актуальной области науки Глава III (главы своей книги Петров называет «статьями») посвящена электролизу. Он рассказывает об электролизе воды, детально описывает экспериментальную установку, подчеркивая необходимость употреблять однородные, чистые подводящие провода, указывая способы зачистки концов, крепления трубки, в которую наливаются вода и другие электролиты. Из этих подробных указаний видно, что Петров демонстрировал электролиз «в присутствии весьма многих зрителей». Он изучал влияние температуры на электролиз, проводя опыты в январе ' 1803 г. на улице. Петров подробно описывал действие тока на человека и животных. Он проводил опыты по гальванизации больных, закладывая основы электротерапии. В главе VII Петров изложил свой знаменитый опыт с электрической дугой: «Если на стеклянную плитку или на скамеечку со стеклянными ножками будут положены два или три древесных угля, способные для произведения светоносных явлений посредством гальвани-вольтовской жидкости, и если потом металлическими изолированными направителями (directores), сообщенными с обоими полюсами огромной баттереи, приближать оные один к другому на расстояние от одной до трех линий, то является между ними весьма яркий белого цвета свет или пламя, от которого оные угли скорее или медленнее загораются и от которого темный покой довольно ясно освещен быть может». Так была открыта и исследована электрическая дуга. Петров заменил один из углей металлическим электродом, наблюдал плавление металлов электрической дугой, а также их сгорание в пламени. Таким было начало будущей электрометаллургии. Вообще труд Петрова можно считать началом будущей электротехники. Из других результатов научной деятельности Петрова упомянем о его исследованиях люминесценции, а также о первых в мире опытах, доказавших возможность электризации металлов трением. Со времен Гильберта металлы считались «не электриками», неспособными электризоваться, как «электрики». Петров показал, что изолированный металл может быть наэлектризован «стеганием» его различными телами. Это было открытие принципиального значения. Труды Петрова оставались неизвестными за рубежом, его открытия переоткрывались, как это было, например, с электрической дугой. У себя на родине они были также забыты до начала нашего века. В учебниках физики электрическая дуга именовалась вольтовой дугой, что давало повод думать о ее открытии Вольтой. В вышедшей еще при жизни Петрова «Опытной, наблюдательной и умозрительной физике», написанной коллегой Петрова, профессором физиологии и анатомии Медико-хирургической академии Д. Веллан-ским (1774—1847), электрическая дуга и «огромная наипаче» батарея Петрова не упоминается, хотя Велланский рассказывает о батарее Шиллерна, о сухих батареях Делюка, Зингера и Замбони, об электрических «светоносных» явлениях, об электризации проводников «стеганием», т. е. о многих вещах, о которых писал Петров. Так еще при жизни Петрова, в стенах его родной академии, началось забвение его трудов. Электромагнетизм Книга Велланского вышла в 1831 г. В ней уже не только упоминались, но и подробно описывались открытие Эрстеда, опыты и теория Ампера. Внимание, проявленное Велланским к новому открытию, не случайно. Его истоки кроются в философских воззрениях как самого Велланского, так и автора открытия. Конец XVIII и начало XIX в. ознаменовались решительным поворотом философской мысли в сторону от мировоззрения французских материалистов и опытного естествознания. Этот поворот возглавили и осуществили представители немецкой классической философии. С этого момента философия и естествознание идут разными путями. «Одна, — говорит Герцен, — прорицала тайны с какой-то недосягаемой высоты, другое смиренно покорялось опыту и не шло далее; друг к другу они питали ненависть; они выросли в взаимном недоверии; много предрассудков укоренилось с той и с другой стороны; столько горьких слов пало, что при всем желании они не могут примириться до сих пор». Герцен писал это в 1844—1845 гг Примерно через четверть века об этом же расхождении между натуралистами (естествоиспытателями) и философами скажет Гельмгольц, выступая с докладом на родине Канта: «...всем известно, Л что натуралисты и философы в настоящее время не могут быть названы добрыми друзьями, по крайней мере в своих научных работах. Всем известно, что между ними уже давно ведется ожесточенный спор...». Гельмгольц отмечает, что принципиальный разлад между философией и естествознанием «еще не имел места во времена Канта», который «стоял на вполне одинаковой почве с натуралистами». Созданная Кантом теория происхождения солнечной системы «дает нам право причислить философа Канта к естествоиспытателям». Гельмгольц считает, что и фихте «не находился... ни в каком принципиальном противоречии с натуралистами». Он указывает, что «спор возгорелся, когда после смерти фихте Шеллинг стал господствовать над наукой в южной, а Гегель в северной Германии». «Среди образованных людей Германии того времени, — говорит Гельмгольц, —интерес к философским наукам превосходил интерес к естественным наукам, вследствие чего последние казались побежденными». Этот интерес передался и в соседние страны. Велланский и Павлов в России, Эрстед в Дании находились под сильным влиянием философии Шеллинга. Учение о целостности мира, о его развитии, о борьбе полярных сил, о всеобщей связи явлений чрезвычайно импонировало этим естествоиспытателям. Велланский считает теоретические основы физики неудовлетворительными. «Все содержание оной (т. е. физики) заключается в исчислении и измерении наружных форм физических предметов; касательно же внутренней сущности какой-либо вещи физики признают абсолютную невозможность к достижению оной». Открытие электромагнетизма шеллингианцы рассматривали как успех своей системы. «До открытия гальванизма не было известно взаимное соотношение между химическими, электрическими и магнитными явлениями, которые физики считали раздельными и одна от другой независимыми». Это совершенно правильное утверждение Велланского вскрывает то положительное начало, которое было введено немецкой классической философией: учение о всеобщей связи, диалектика природы. Велланский правильно подчеркивает, что физика могла рассматривать химические, магнитные и электрические явления изолированно лишь до открытия гальванизма. Открытие гальванизма независимо от какой-либо философии должно было рано или поздно привести к открытию электромагнетизма, и не случайно приоритет Эрстеда оспаривался. Еще в 1876 г. Эндрюс (1813—1885) в своей президентской речи на собрании Британской Ассоциации содействия прогрессу наук в Глазго должен был вернуться к вопросу о приоритете Эрстеда. Этот вопрос решен в пользу Эрстеда, и современный историк науки полностью согласен со словами Велланского: «Электромагнетизм открыт в Копенгагене профессором Эрстедом, который открытие свое возвестил 1820 года». Ханс Кристиан Эрстед родился 14 августа 1777 г. в семье датского аптекаря. Учился Эрстед в Копенгагенском университете, где в 20 лет получил диплом фармацевта, а в 22 года степень доктора философии. В 1806 г. он становится профессором Копенгагенского университета. Увлекшись философией Шеллинга, он много думал о связи между теплотой, светом, электричеством и магнетизмом. Плодом этих размышлений явился изданный в 1813 г. в Париже трактат «Исследования о тождестве электрических и химических сил». В 1820 г. он сделал свое знаменитое открытие, описанное им в брошюре «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку». Брошюра была издана на латинском языке в Копенгагене и датирована 21 июля 1820 г. Это открытие обессмертило имя ее автора в истории физики. Умер Эрстед 9 марта 1851 г. Увлечение философией Шеллинга сказалось уже в самом названии брошюры Эрстеда. Он называет процесс, происходящий в проволоке, соединяющей полюсы гальванической батареи, не током, а «конфликтом». Результатом этого «конфликта» является разогревание проводника, причем Эрстед считал, что нагревание проволоки необходимо для получения эффекта. Опыты над действием тока на магнитную стрелку привели Эрстеда к важному выводу, что «электрический конфликт, по-видимому, не ограничен проводящей проволокой, но имеет довольно обширную сферу активности вокруг этой проволоки». Отбрасывая философскую терминологию, можно констатировать, что Эрстед обнаружил вокруг проволоки с током магнитное поле, действующее на ток. Далее он пишет: «Кроме того, из сделанных наблюдений можно заключить, что этот конфликт образует вихрь вокруг проволоки». Другими словами, магнитные силовые линии окружают проводник с током, или электрический ток является вихрем магнитного поля. Таково содержание первого основного закона электродинамики, и в этом суть открытия Эрстеда. Сегодня любой школьник без труда воспроизведет опыт Эрстеда, продемонстрирует «вихрь электрического конфликта», насыпав на картон, через центр которого проходит проволока с током, железные опилки. Но обнаружить магнитные действия тока было нелегко. Их пытался обнаружить Петров, соединяя полюсы своей батареи железными и стальными пластинками. Он не обнаружил никакого намагничивания пластинок после нескольких часов пропускания через них тока. Имеются сведения и о других наблюдениях, однако с полной достоверностью известно, что магнитные действия тока наблюдал и описал Эрстед. Это открытие, как справедливо отмечал Велланский, привлекло внимание физиков Европы. «Ученый датский физик, профессор, — писал Ампер,—своим великим открытием проложил физикам новый путь исследований. Эти исследования не остались бесплодными; они привлекли к открытию множества фактов, достойных внимания всех, кто интересуется прогрессом». Открытие Эрстеда вызвало широкий резонанс, как об этом писал Велланский. Вскоре, после того как де ла Рив в Женеве повторил опыты Эрстеда, хлынул поток опытов и сообщений. В сентябре 1820 г. Араго показал, что проволока с током притягивает железные опилки. В том же сентябре Швей-гер применил эффект Эрстеда в качестве указателя тока (мультипликатор). В 1821 г. Поггендорф (1796-1877) придал ему удобную форму, и в этом виде его и поныне можно видеть в школьных физических кабинетах. Закон действия тока на магнитный полюс был установлен экспериментально Био и Саваром. Доклад об этом законе Био и Савар сделали 30 октября 1820 г. Лаплас облек закон Био— Савара в математическую форму элементарного взаимодействия между элементом тока и намагниченной точкой. В этой форме закон Био — Савара фигурирует в учебниках физики. Ампер. Наибольший вклад в изучение электромагнетизма внес французский физик Ампер, назвавший новую область физики «электродинамикой», и это название прочно вошло в язык физики. Андре Мари Ампер родился 22 января 1775 г. в семье лионского коммерсанта. Под руководством отца Ампер получил хорошее и разностороннее образование. Он изучал естественные науки, математику, греческий, латинский и итальянский языки. Ампер изучил все тома знаменитой «Энциклопедии» Дидро и Даламбера, труды Эйлера, Бернулли, Лагранжа. Амперу было восемнадцать лет, когда семью постигло большое горе. В 1793 г. Конвент посылает в Лион, осмелившийся бросить вызов Конвенту, карательную экспедицию, которой предписывает «немедленно наказать лионскую контрреволюцию силою оружия». Конвент приказывает уничтожить Лион и на его развалинах возвести колонну с надписью: «Лион боролся против свободы — Лиона больше нет». В числе жертв этой экспедиции оказался и отец Ампера Жан Жак. Он был арестован 9 октября и 24 ноября 1793 г. казнен. Для семьи наступили трудные времена. Ампер избирает педагогическое поприще. Сначала он работает домашним учителем, а в 1802 г. становится преподавателем физики и химии в центральной школе г. Бурге. В 1803 г. Ампера назначают преподавателем математики в Лионский лицей. В следующем, 1804 г. он становится репетитором в Политехнической школе в Париже, а с 1808 г.— ее профессором. В 1814 г. его избирают членом Академии наук. С 1820 г. Ампер усиленно занимается электродинамикой, и в 1826 г. выходит его основной труд по электродинамике «Теория электродинамических явлений, выведенная исключительно из опыта». Позже Ампер занимается многими научными проблемами, в том числе и проблемой классификации наук. В результате этих исследований появилось его сочинение «Опыт философии наук, или Аналитическое изложение естественной классификации всех человеческих знаний», первый том которого вышел в 1834 г., второй, незаконченный том вышел посмертно в 1843 г. Жизнь Ампера была тяжелой. Его преследовали несчастья: гибель отца, потеря первой жены, неудачный второй брак, смерть матери, которую он горячо любил, и многое другое. События «ста дней» и второй реставрации также отразились на нем. Ко всему этому прибавилось слабое здоровье. В одну из служебных поездок он скончался в Марселе 10 июня 1836 г. Вершиной научного творчества Ампера является создание электродинамики. Начиная с первого сообщения в Парижской Академии наук 18 сентября 1820 г., последовавшего через неделю после сообщения Араго об открытии Эрстеда, идут один за другим сообщения Ампера: 25 сентября; 2, 9, 16, 30 октября; 6, 13 ноября; 4, 11 и 26 декабря 1820 г. В 15-м томе «Анналов химии и физики» был опубликован «Труд, представленный Королевской Академии наук 2 октября 1820 г. и содержащий резюме докладов, прочитанных в академии 18 и 25 сентября 1820 г. относительно действий электрических токов». Этот труд подытоживал напряженную работу Ампера по исследованию нового явления, выполненную в течение короткого двухнедельного промежутка времени. Ампер различает два основных электрических понятия: электрическое напряжение и электрический ток. Под электрическим током Ампер понимает «состояние электричества в цепи проводящих и электродвижущих тел»; под его направлением — направление положительного электричества. Внутри вольтова столба это будет «направление от конца, на котором при разложении воды выделяется водород, к концу, на котором выделяется кислород». «...Направление электрического тока в проводнике, соединяющем концы столба, будет обозначать направление от конца, где выделяется кислород, к концу, где выделяется водород». Следовательно, Ампер вводит впервые такие фундаментальные понятия, как «электрический ток», «электрическая цепь», устанавливает направление тока в замкнутой цепи. Наименование единицы тока ампер, принятое в физике, вполне оправдано заслугами Ампера. Он же вводит термин «гальванометр» для прибора, действие которого основано на отклонении магнитной стрелки, и указывает, что «им следует пользоваться при всех опытах с электрическими токами, как принято пользоваться электрометром при электрических машинах, чтобы видеть в каждый момент, существует ли ток и какова его энергия». Ампер впервые установил наличие механических взаимодействий токов, которые могут быть в зависимости от направления как притягательными, так и отталкивательными. Он подчеркивает, что «эти притяжения и отталкивания... существенно отличаются от тех, которые вызываются электричеством в состоянии покоя». Исследуя экспериментально электродинамические взаимодействия, Ампер приходит к выводу, что путем комбинации проводников и магнитных стрелок можно «устроить своего рода телеграф с помощью одного вольтова столба, расположенного вдали от стрелок». Так, идея электромагнитного телеграфа возникла в первый же год открытия электромагнетизма. Она разрабатывалась рядом изобретателей и ученых. В 1829 г. русский дипломат П. Л. Шиллинг (1786—1837) сконструировал телеграфный аппарат, дающий возможность передавать русские буквы и цифры с помощью шести мультипликаторов. Аппарат Шиллинга был установлен в Зимнем дворце. В 1833 г. Гаусс и Вебер построили телеграфную линию в Геттингене, соединяющую астрономическую и физическую лаборатории. Существовали и другие системы, в частности система русского физика Б. С. Якоби (1801—1874). Однако широкое распространение электромагнитный телеграф получил после того, как американский изобретатель Самуил Морзе (1791—1872) создал удобную конструкцию аппарата, разработал схему соединения отравительной и приемной станции и изобрел специальную азбуку с двумя знаками (точка — тире). Первый аппарат Морзе был построен в 1835 г., а в 1844 г. заработала телеграфная линия Вашингтон — Балтимор. Возвращаемся к исследованиям Ампера. Очень скоро он пришел к мысли об эквивалентности магнитного листка круговому току и разработал представление о магните «как о совокупности электрических токов, расположенных в плоскостях, перпендикулярных к линии, соединяющей полюсы магнита». Отсюда он пришел к выводу, что спираль, обтекаемая током (соленоид), будет эквивалентна магниту. Это привело Ампера к мысли об отсутствии магнитных агентов («магнитных жидкостей») в природе и о возможности свести все явления магнетизма к электродинамическим взаимодей ствиям. Амперова молекулярная тео рия магнетизма получила физическугс опору в электронной физике уже в XX в. Обобщающим трудом Ампера была «Теория электродинамических явлений, выведенная исключительно из опыта», изданная в 1826 г. с подзаголовком «Произведение, в котором собраны труды г. Ампера, доложенные им Королевской Академии наук в заседаниях от 4 и 26 декабря 1820 г., 10 июня 1822 г., 22 декабря 1823 г., 12 сентября и 28 ноября 1825г.». Он поставил перед собой задачу, основываясь на опыте, вывести формулу взаимодействия элементов тока. Задача была нелегкой. Опыт давал только интегральное взаимодействие. Ампер варьировал опыты с взаимодействием токов, пытаясь нащупать правильную формулу и, интегрируя ее для различных случаев конечных контуров тока, сравнить результат с опытом, формула Ампера открывает длинный ряд элементарных законов электродинамики. Важно, что элементарные взаимодействия двух элементов тока не удовлетворяют третьему закону Ньютона, это новый тип взаимодействия, отличный от обычных центральных сил. Впрочем, то обстоятельство, что физика открыла новый тип сил, отличный от гравитационных, электростатических и магнитных сил, было ясно уже из опыта Эрстеда. Электродинамические силы, как правильно заметил Ампер, новые силы, отличные от сил, известных в электростатике. Однако сам Ампер искал свой закон, опираясь на третий закон механики. Он полемизировал с Био, установившим, что силы, действующие со стороны элемента тока на магнитный полюс, образуют пару с силой, действующей со стороны полюса на элемент тока. Так началась проблема закона сохранения количества движения в электродинамике. Ампер еще не подозревал о существовании поля, о запаздывании электромагнитных действий. Он стоял на позициях дальнодействия, что для постоянных токов было допустимо. Но ему и его современникам уже пришлось столкнуться с новыми фактами, трудно объяснимыми при помощи ньютоновских представлений. Рис. 36. Станок Ампера Эрстед, а затем и Фарадей ясно увидели вихревой характер магнитного поля. В 1821 г. фарадей доказал экспериментально, что отдельный магнитный полюс, помещенный вблизи проводника с током, приходит в непрерывное вращение. Ему пришлось проявить немало изобретательности, чтобы придумать такое расположение проводников и магнита, чтобы действию тока подвергался только один полюс. Магнит в опыте фарадея вращался безостановочно, пока цепь была замкнута. Это была первая модель электродвигателя. Как всегда бывает в науке, когда открывается новое поле исследования, появляется большое количество экспериментаторов и изобретателей, возникают бесчисленные споры о приоритете того или иного открытия. Имена этих экспериментаторов и изобретателей ныне забыты или полузабыты, фарадею пришлось выдержать длительный спор о приоритете в открытии электромагнитных вращений. Сначала его обвинял учитель Дэви в заимствовании идеи у Волластона, спустя много лет после смерти Дэви обвинения повторил его брат. Такие споры, отравляющие жизнь многим выдающимся ученым, неизбежны, когда «идеи носятся в воздухе». Время в конце концов выносит окончательный приговор. Из многочисленных открытий и изобретений в области электричества, сделанных в 20-е годы XIX в., следует упомянуть об открытии в 1821 г. термоэлектричества. Оно принадлежит прибалтийскому физику Томасу Зеебеку (1770—1831). Это открытие стало возможным благодаря открытию Эрстеда и некоторое время даже именовалось термомагнетизмом. В свою очередь, открытие Зеебека и изобретение мультипликатора дали возможность немецкому учителю Георгу Ому (1787—1854) открыть количественный закон цепи электрического тока, носящий ныне его имя. Опыты и теоретические рассуждения Ома, который находился под сильным влиянием вышедшего в 1822 г. сочинения Фурье (1768—1830) «Аналитическая теория тепла», были описаны им в основном труде «Гальваническая цепь, разработанная математически» (1827). Следует отметить, что этот закон, без которого мы сейчас не представляем себе учебника электричества, не сразу был принят физиками и стал входить в науку только в конце 30-х — начале 40-х годов XIX в. Его признание шло параллельно с успехами электрометрии. Одним из первых принял и применил закон Ома русский академик Э.Х.Ленц, который рассматривал и вопросы распределения тока в разветвленных проводниках, явившись предшественником Кирхгофа. Ленц занимался также изучением электромагнитов, впервые на основе опытов Араго и теории Ампера созданных Вильямом Стерд-женом (1783-1850) в 1825 г. Электромагниты с большой подъемной силой были построены американским физиком Джозефом Генри (1799—1878), независимо от фарадея открывшим электромагнитную индукцию. Однако его публикация об этом открытии запоздала, и слава великого открытия принадлежит Михаилу фарадею. Фарадей. Михаил (английское произношение—Майкл) фарадей родился 22 сентября 1791 г. в семье лондонского кузнеца. Недостаточность средств не позволила будущему великому ученому получить хорошее образование. В начальной школе он научился читать, писать, постиг начала арифметики, а затем поступил в учение к переплетчику. Здесь он восполнил недостатки образования чтением. Особенно его увлекло электричество и химия, и он сам начал проделывать опыты, описанные в книгах. Промышленная революция пробудила в широких кругах англичан интерес к естествознанию. В Лондоне большим успехом пользовались популярные лекции для широкой публики. Организованный в 1800 г. Лондонский Королевский институт регулярно проводил вечерние публичные лекции. Лекции во времена фарадея читал знаменитый химик Дэви. Эти лекции увлекли фарадея. Он тщательно записывал их и аккуратно переплетенные записи направлял Дэви. Когда Дэви понадобился помощник, он вспомнил о фарадее и привлек его в институт в качестве ассистента. Гениальный самоучка вступил на путь, приведший его к бессмертию. Первые научные работы фарадея относятся к химии. Они обратили на себя внимание европейских химиков и сделали его имя широко известным Д.И.Менделеев в своих знаменитых «Основах химии» неоднократно упоминает имя фарадея. Он цитирует его характеристику пламени, воспроизводит описание его опыта по анализу пламени свечи, неоднократно упоминает его результаты в области сжижения газов и его закон электролиза. Менделеев сочувственно упоминает о фарадеевском понимании электрического тока как переносчика химического движения. В истории химии фарадей занимает видное место. Всемирную славу фарадею принесли его электрические исследования. Открытие Эрстеда взволновало ученых Королевского института. Дэви и Вол-ластон не только повторили его опыты, но и придумали новые демонстрации взаимодействия токов и магнитов, фарадей, заинтересовавшись новым открытием, тщательно изучил литературу по этому вопросу и выступил в 1821—1822 гг. со статьей «Опыт истории электромагнетизма». Статья Эрстеда подсказывала мысль о наличии вращения вокруг тока. Идею электромагнитного вращения высказал Волластон. Фарадей, придя к ней самостоятельно, стал думать о том, как экспериментально обнаружить его. Ему удалось обеспечить действие тока лишь на один из полюсов магнита и с помощью ртутного контакта осуществить непрерывное вращение магнита вокруг проводника с током. Этот первый электродвигатель заработал у фарадея в декабре 1821 г. Тогда же фарадей записал в своем дневнике задачу: превратить магнетизм в электричество. Решение этой задачи потребовало около десяти лет. С ноября 1831 г. Фарадей начал систематическую публикацию своих исследований по электричеству, составивших трехтомный труд под заглавием «Экспериментальные исследования по электричеству». Дадим краткий обзор содержания этой знаменитой книги. В первой серии, датированной 24 ноября 1831 г. и содержащей разделы: об индукции электрических токов, об образовании электричества и магнетизма, о новом электрическом состоянии материи, объяснение магнитных явлений Араго,— описаны основные опыты фарадея по электромагнитной индукции. В первом опыте, с помощью которого и было открыто новое явление, фарадей использовал деревянный цилиндр, на который были намотаны две изолированные друг от друга обмотки. Одна из них была соединена с гальванической батареей, другая — с гальванометром. При замыкании и размыкании тока в первой обмотке стрелка гальванометра во второй обмотке отклонялась при замыкании тока в одну сторону, при размыкании в противоположную. Действие одной цепи электрического тока на другую фарадей назвал вольта-электрической индукцией. Вольта-электрическая индукция усиливалась, если внутрь обмотки помещали железо, фарадей устроил индукционный прибор в виде железного кольца (тора), на которое были намотаны две изолированные обмотки — первичная с источником тока и вторичная с гальванометром. Кольцо фарадея было первой моделью трансформатора. Затем Фарадей получил индукционные действия с помощью обыкновенных магнитов. Явления эти фарадей назвал магнитоэлектрической индукцией. фарадей считал, что проводник, подвергающийся индукционному воздействию со стороны другого тока или магнита, находится в особом состоянии, которое он назвал электротоническим. Это название не удержалось в науке, но именно отсюда началось исследование фарадеем роли среды в электромагнитных взаимодействиях. Существенно, что Фарадей, отмечая переменный характер процесса индукции, говорит об «индуцированной волне электричества». Несколькими месяцами позже, 12 марта 1832 г., он фиксировал результат своих наблюдений над временным характером индукционных явлений в специальном письме, озаглавленном «Новые воззрения, подлежащие в настоящее время хранению в запечатанном конверте в архивах Королевского общества». В этом замечательном письме, обнаруженном в архивах лишь спустя 106 лет, т. е. в 1938 г., содержится совершенно определенный вывод, «что на распространение магнитного взаимодействия требуется время», что действие одного магнита на другой «распространяется от магнитных тел постепенно и для своего распространения требует определенного времени». фарадей указывает, «что электрическая индукция распространяется точно таким же образом», и считает «возможным применить теорию колебаний к распространению электрической индукции». Процесс распространения индукции похож «на колебания взволнованной водной поверхности или же на звуковые колебания частиц воздуха». фарадей пишет, что он хотел бы проверить свои идеи экспериментально, но ввиду занятости решил передать свое письмо на хранение, чтобы закрепить за собой открытие фиксированной датой. Он указывает, что «в настоящее время, насколько мне известно, никто из ученых, кроме меня, не имеет подобных взглядов». Поразительна интуиция Фарадея, позволившая ему вскоре после открытия электромагнитной индукции прийти к идее электромагнитных волн. Он совершенно прав, считая эту идею чрезвычайно важной и утверждая свой приоритет в специальном письме, датированном точной датой. Вполне понятны заботы Фарадея о приоритете. В конце раздела «Об электротоническом состоянии» он упоминает о претензиях на приоритет в открытии индукции со стороны Френеля и Ампера. К открытию независимо от фарадея пришел и Генри. После публикации фарадея многие физики осознали, что они наблюдали в своих экспериментах по магнитному действию токов аналогичные явления. Открытие «носилось в воздухе». В истории науки действует закон созревания открытий: наступает время, когда открытие должно быть сделано, оно созрело. Так было с законом тяготения, с открытием математического анализа, так было и с законом индукции. В последнем разделе первой серии фарадей объясняет явление, открытое Араго. Магнитная стрелка, помещенная под плоскостью медного диска, приходит во вращение, когда диск вращается. Точно так же при вращении магнита приходит во вращение подвешенный над ним медный диск, фарадей объяснил это открытое Араго загадочное явление действием электромагнитной индукции и указал, что эффект Араго дает возможность получить «новый источник электричества». Между полюсами магнита вращался медный диск. Скользящие контакты у периферии и центра диска отводили генерируемый при вращении диска ток к цепи, содержащей гальванометр. «Этим было показано, — пишет Фарадей, — что можно создать постоянный ток электричества при помощи обыкновенных магнитов», фарадей в этом опыте сконструировал униполярную динамо-машину. Варьируя опыты с получением индукционного тока вращением проводников или магнитов, фарадей приходит к важному выводу: «Все эти результаты,— пишет он, — доказывают, что способность индуцировать токи проявляется по окружности вокруг магнитной равнодействующей или силовой оси точно так, как расположенный по окружности магнетизм возникает вокруг электрического тока и им обнаруживается». Установленную фарадеем связь Максвелл позднее выразил математически. Рис. 37. Электромагнитное вращение. Рисунок Фарадея Установленный Фарадеем факт, что электродвижущая сила индукции возникает при изменении магнитного потока (замыкании, размыкании, изменении тока в индуцирующих проводниках, приближении и удалении магнита и т. д.), Максвелл выразил равенством: Здесь ? — электродвижущая сила индукции, Ф — магнитный поток, охватываемый проводником, в котором индуцируется ток. фарадей говорит о том, что способность индуцировать токи «проявляется по окружности вокруг магнитной равнодействующей». Это, как показал Масквелл, означает, что переменное магнитное поле окружено вихревым электрическим полем. В векторной форме закон, открытый фарадеем, выражается уравнением: Знак минус, поставленный в равенствах (1) и (1'), соответствует правилу, установленному петербургским академиком Э. X. Ленцем (родился 12 февраля 1804 г. в Дерпте (Тарту), умер в Риме 29 января 1865 г.). 29 ноября 1833 г.Ленц доложил Петербургской Академии наук работу «Об определении направления гальванических токов, возбуждаемых электродинамической индукцией». В этой работе он обращает внимание на то, что фарадей дает различные правила для определения направления индуцируемых токов в случае вольта-электрической и в случае магнитоэлектрической индукции. Ленц понял, что разные правила, предложенные фарадеем, затушевывают то обстоятельство, что во всех случаях индукции существует один и тот же индукционный процесс, подчиняющийся общему правилу. Это правило Ленц формулирует следующим образом: «Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении». Ленц рассматривает ряд примеров на применение своего правила и показывает, что во всех случаях возникает индукционный ток такого направления, что он противодействует изменению, порождающему его. В 1846 г. франц Нейман (1798-1895) нашел выражение закона индукции в следующем виде: V=-?A/dt где знак минус показывает, что на создание индукционного тока надо затратить энергию. Фарадей продолжал изучение электромагнитной индукции во второй серии своих «Экспериментальных исследований» (январь 1832 г.). В третьей серии (январь 1833 г.) фарадей кладет конец спору о различных видах электричества: обыкновенном, гальваническом, животном, индукционном. Рядом опытов он показывает, что все виды электричества тождественны между собой, различаясь только знаком. Исследуя действия, производимые обыкновенным, гальваническим, магнитным, термическим и животным электричеством, фарадей приходит к фундаментальному заключению: «Отдельные виды электричества тождественны по своей природе, каков бы ни был их источник». В июне 1833 г. появилась пятая серия «Экспериментальных исследований», посвященная явлениям электролиза. В этой серии, а также в последующих—шестой, седьмой и восьмой — Сериях фарадей занимается изучением химических действий тока. Рис. 38 Опыт по электромагнитной индукции. Рисунок Фарадея Химические действия тока были открыты сразу после изобретения вольтова столба. Дэви открыл электролитическим разложением щелочные металлы. Иоганн Риттер обнаружил поляризацию гальванического элемента. Пропуская ток через подкисленную воду, он установил, что электроды, опущенные в электролит и отключенные от источника, снова дают после их соединения проводником электрохимическое разложение, но в обратном направлении. Так был открыт аккумулятор. Рис. 39. Униполярная машина. Рисунок Фарадея Прибалтийский ученый Кристиан Гротгус (1785—1822) впервые пытался представить механизм электролиза посредством цепочек полярно заряженных молекул. В пятой серии Фарадей формулирует точный закон электролиза: «Что бы собой ни представляло разлагаемое вещество: воду, растворы солей, кислоты, расплавленные тела и т. д., — для одного и того же количества электричества сумма электрохимических действий есть также величина постоянная, т. е. она всегда эквивалентна стандартному химическому действию, основанному на обычном химическом сродстве» В седьмой серии фарадей формулирует этот закон более сжато:« Химиче ское действие электрического тока прямо пропорционально абсолютному количеству проходящего электричества». Фарадей вводит новую терминологию, ныне общеупотребительную. Электроды, подводящие ток к разлагаемому раствору, он называет анодом и катодом. Разложимые вещества он называет электролитами, вещества, на которые разлагаются электролиты, — ионами, а именно анионами и катионами, смотря по тому, где отлагается вещество — у анода или катода. «Числа, соответствующие весовым количествам, в которых они выделяются, я называю электрохимическими эквивалентами». Фарадей устанавливает важный факт, что для выделения любого вещества в количестве, равном его электрохимическому эквиваленту, требуется одно и то же количество электричества. Эта величина играет важную роль в современной физике, являясь одной из основных физических констант, и называется «число фарадея». Фарадей связывает этот факт с основными представлениями химии. Он пишет: «Согласно этой теории эквивалентные веса тел представляют собой такие количества их, которые содержат равные количества электричества... Иначе если принять атомную теорию и соответствующие ей выражения, то атомы тел, эквивалентные друг другу в отношении их обычного химического действия, содержат равные количества электричества, естественно связанного с ними». Таким образом фарадей приходит к представлению о некотором элементарном заряде, связанном с атомами вещества. Он указывает, что «атомы материи каким-то образом одарены электрическими силами или связаны с ними и им они обязаны своими наиболее замечательными качествами, и в том числе своим химическим сродст вом друг к другу». Все это позволяет высказать утверждение, что фарадей является основателем электронной теории вещества, впервые высказавшим мысль о дискретности электричества, об элементарном электрическом заряде. Тринадцатый раздел седьмой серии, в котором содержатся эти глубокие мысли, называется «Об абсолютном количестве электричества, связанном с частицами или атомами материи». Это название говорит само за себя. В девятой серии, озаглавленной «Об индуктивном влиянии электрического тока на самого себя и об индуктивном действии электрических токов вообще», фарадей описывает явление самоиндукции. Это явление было открыто независимо друг от друга американцем Генри и англичанином Дженкиным. фарадей упоминает только о последнем, очевидно, не зная об открытии Генри. Современная физика увековечила приоритет Генри, присвоив единице индуктивности название генри. Фарадей описывает экспериментальную установку, посредством которой и доныне демонстрируют на лекциях явление самоиндукции. Он констатирует, что самоиндукция аналогична инерции в механике, указывает, что индуктивность проводника зависит от его формы и особенно возрастает, если проводник свернуть в спираль. Все это заставляет его еще раз вернуться к идее электротонического состояния и к исследованию связи между электрическими и магнитными силами. Мысль фарадея неустанно обращается к пространству, окружающему проводники, и в его уме постепенно вызревает глубокая идея поля. В одиннадцатой серии фарадей подробно исследует диэлектрические свойства веществ, вводя для их характеристик особое число, которое он называет удельной индукцией или удельной индуктивной способностью. Эту величину позже назвали диэлектрической постоянной, а ныне называют диэлектрической проницаемостью. Исследование диэлектриков вновь подводит фарадея к мысли о существовании роли среды в электрических взаимодействиях, которые как бы разливаются в окружающем пространстве по кривым линиям. Это последнее обстоятельство особенно подчеркивает фарадей, считая, что оно противоречит картине действия на расстоянии, принятой сторонниками мгновенного дальнодействия. От опытов с диэлектриками фарадей переходит к исследованию электрического разряда в газах. Он описывает различные формы разряда в газах при атмосферном давлении и в разреженном состоянии. В последнем случае фарадею Удалось обнаружить темное пространство, разделяющее, области свечения у катода и у анода. Это темное пространство ныне называется фарадеевым. Так фарадей положил начало детальному изучению разрядов в газах, той области физики, которую он сам считал важной и из которой в дальнейшем историческом развитии возникли электроника, рентгенофизика, радиоактивность. Рис. 40. Рисунок Фарадея по электролизу В шестнадцатой и семнадцатой сериях «Экспериментальных исследований по электричеству» фарадей рассматривает спор между сторонниками контактной теории источника электрического тока и сторонниками химической теории. Контактная теория, ведущая свое происхождение от Вольты, «находит источник мощности в контакте» разнородных проводников, а химическая — «в химической силе», как выражается фарадей, или в химической энергии, как бы сказали мы. Свое мнение фарадей — он является сторонником химической теории — обосновывает многочисленными соображениями и экспериментальными фактами. В качестве окончательного вывода он прямо указывает, что «контактная теория допускает, что сила... может будто бы возникнуть из ничего, что без всякого изменения действующей материи и без расхода какой-либо производящей силы может производиться ток, который будет вечно идти против постоянного сопротивления...». «Это было бы поистине сотворением силы, — продолжает Фарадей, — и это не похоже ни на какую другую силу в природе». Эти слова были написаны в январе 1840 г., когда закон сохранения энергии еще не был открыт, но фарадей пишет так, как будто ему этот закон известен. Более того, он ясно представляет картину превращения энергии из одного вида в другой. «Мы имеем много процессов, — пишет он, — при которых форма силы может претерпеть такие изменения, что происходит явное превращение ее в другую. Так мы можем превратить химическую силу в электрический ток или ток в химическую силу. Прекрасные опыты Зеебека и Пельтье показывают взаимную превращаемость теплоты и электричества, а опыты Эрстеда и мои собственные показывают взаимную превращаемость электричества в магнетизм. Но ни в одном случае, даже с электрическим угрем и скатом, нет чистого сотворения силы; нет производства силы без соответствующего израсходования чего-либо, что питает ее». Этот 2071-й параграф семнадцатой серии, датированный 29 декабря 1839 г., представляет по сути дела законченную качественную формулировку закона сохранения и превращения энергии. Мысли, высказанные здесь фарадеем, очень близки воззрениям Энгельса на закон сохранения энергии. Энгельс подчеркивает в законе именно превращаемость форм энергии, фарадей на собственном опыте осознал эту сторону закона. Он «превратил магнетизм в электричество», исследовал химические превращения в электрической цепи, он, наконец, искал превращения света в магнетизм, тяготения — в электричество и магнетизм. Читая летом 1834 г. популярные лекции о взаимоотношении электрических и магнитныхявлений, он последнюю, шестую лекцию посвятил вопросу о взаимоотношении «химического сродства, электричества, теплоты, магнетизма и других сил материи». Эта философская установка Фарадея в значительной степени способствовала его научным достижениям. Он открыл электромагнитную индукцию не случайно, он напряженно искал ее десять лет. Осенью 1845 г. он открывает магнитное вращение плоскости поляризации, получившее в науке название эффекта фарадея. Этот тонкий эффект опять-таки не был случайным открытием. Девятнадцатую серию, посвященную эффекту фарадея, он открывает следующим признанием: «Я давно уже придерживался мнения — и оно почти достигло степени убеждения — ... что различные формы, в которых проявляются силы материи, имеют общее происхождение, или, другими словами, настолько близко родственны друг другу и взаимно зависимы, что они могут как бы превращаться друг в друга и обладают в своем действии эквивалентами силы», фарадей сообщает, что он давно и безуспешно пытался «открыть прямую связь между светом и электричеством» и что «в конце концов мне удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию». Далее он описывает свои опыты по вращению плоскости поляризации света магнитным полем. Фундаментальная идея о взаимосвязи, взаимопревращаемости различных сил природы дополнялась у фарадея другой фундаментальной идеей об активной роли среды, в том числе и пустого пространства, в физических процессах. В двадцатой серии он описывает влияние магнитного поля на различные среды и находит диамагнетизм и парамагнетизм (термины введены фарадеем). Тщательное изучение электрических и магнитных свойств вещества в конце концов привело фарадея к установлению фундаментальной новой идеи, идеи поля. фарадей разработал экспериментальную методику исследования магнитного поля с помощью пробной катушки и баллистического гальванометра. Он ввел метод изображения магнитного поля с помощью силовых линий. Он писал в 1851 г.: «Я..., изучая отношение вакуума к магнитной силе и общий характер магнитных явлений, протекающих вне магнита, больше склоняюсь к мысли, что передача силы представляет собой именно такое явление, протекающее вне магнита; я считаю невероятным, что эти явления представляют собой простое притяжение и отталкивание на расстоянии». Следует отметить, что современники фарадея предпочитали идею «простого притяжения и отталкивания на расстоянии». Слишком осязательны были успехи Ньютона, формула закона тяготения которого так блестяще оправдалась в небесной механике. Напоминающие эту формулу законы Кулона дали возможность развить математическую теорию электростатики и магнитостатики. Амперу удалось включить в эту схему и электромагнетизм. Теперь оставалось так обобщить закон Ампера, чтобы он включил в себя и индукционные процессы, открытые и изученные фарадеем. Эту задачу поставил перед собой Вильгельм Вебер (1802-1891), которому в конце концов удалось найти формулу взаимодействия заряженных электрических частиц (1846). Однако в эту формулу входили не только заряды взаимодействующих частиц и их положения, но также их относительная скорость и ускорение, что делало ее совсем непохожей на законы Ньютона и Кулона и сложной для расчетов. Фарадей же вообще отказался от концепции действия на расстоянии и ввел в физику совершенно новый объект — физическое поле. «При этой точке зрения на магнит, — писал Фарадей в 1852 г.,—среда или пространство, его окружающие, играют столь же существенную роль, как и самый магнит, будучи частью настоящей и полной магнитной системы». Для фарадея поле — это то, что излучается, распространяется с конечной скоростью в пространстве, взаимодействует с веществом. Примером такого поля является излучение Солнца. «В этом случае лучи (которые представляют собой силовые линии) проходят через промежуточное пространство; но здесь мы можем оказывать на эти линии действие при помощи различных сред, расположенных на их пути. Мы можем изменить их направление посредством отражения или преломления; мы можем заставить их идти по криволинейным или ломаным путям. Мы можем отрезать их от их источника и затем искать их и найти, прежде чем они достигнут своей конечной цели. Они связаны с временем и требуют 8 минут, чтобы пройти от Солнца до Земли; таким образом, они могут существовать независимо и от своего источника и от места, в которое в конце концов приходят. Таким образом, они имеют ясно различимое физическое существование» (подчеркнуто мною, — Я. К.). Такова концепция поля, к которой фарадей пришел в результате длительного научного пути и первоначальный набросок которой он дал в своем запечатанном письме 1832 г. С фарадеем в физику наряду с частицами вещества вошла и новая форма материи — поле, излучаемое и поглощаемое частицами и распространяющееся в пространстве с конечной скоростью. Математически эта идея была разработана гениальным преемником фарадея Джемсом Клерком Максвеллом. Напряженная работа надломила душевные силы фарадея. Все чаще и чаще он жалуется на ослабление памяти: «Уже через день я не могу припомнить выводов, к которым пришел накануне... Я забываю, какими буквами изобразить то ил л другое слово», — пишет он в одном из писем. В таком состоянии он проводит, угасая, долгие годы, год от года сужая круг своей деятельности. Умер он 25 августа 1867 г. Возникновение и развитие термодинамики. Карно Если в XVIII в. в физике (за исключением механики) господствовал эксперимент, так что физику определяли как науку «о всем том, что через опыты познать можно», то в XIX в. картина начинает меняться. Экспериментальная физика продолжает господствовать над теоретической, и редактор ведущего физического журнала «Annalen der Physik» Поггендорф, будучи сам экспериментатором, тщательно заботится о том, чтобы на страницы журнала не попала «метафизика». Но уже волновая оптика Юнга и Френеля представляла собой, кроме совокупности изящных и остроумных опытов, стройную теоретическую систему, позволившую Гамильтону предсказать тонкое, трудно наблюдаемое явление конической рефракции. Электростатика и магнитостатика в руках Гаусса и Грина развивались по образцу ньютоновской теории тяготения, и ее основные результаты и поныне входят в курсы теоретической физики. Электродинамика Ампера позволяла надеяться, что аналогичная математическая теория будет разработана и для электромагнетизма. Но великие открытия фарадея спутали все карты, и, хотя поиски обобщающего закона не прекращались, в электродинамике до Максвелла господствовал идейный разброд. Труднее всего поддавались теоретической обработке тепловые явления. Здесь еще шло накопление эмпирических фактов, разрабатывались методы определения тепловых характеристик: коэффициентов расширения, теплопроводности, удельных теплоемкостей. Эти измерения нужны были и для бурно развивающейся теплотехники. «Его величество пар» работал на фабриках и заводах, на железных дорогах, на морских и речных путях Паровая машина была основным и единственным двигателем бурно развивающейся капиталистической индустрии. Правительство капиталистической франции сочло необходимым субсидировать исследования Анри Виктора Реньо (1810—1878), предпринятые «с целью определить числовые данные, важные в теории паровой машины». «Большие средства, представленные в распоряжение Реньо, — писал А. Г. Столетов, — позволили ему не стесняться ни помещением, ни размерами аппаратов». Лаборатория Реньо помещалась в небольшом здании, построенном им в саду College de France. Лаборатория была хорошо снабжена для термодинамических исследований (паровая машина в 4 л. с., газометры, манометры в 20 м длиной, точные термометры, барометры, прибор, служивший Реньо для определения абсолютного расширения ртути, приборы для калориметрических измерений и т. д.). С 1854 г. Реньо директор Севрской фарфоровой фабрики, где для него также сооружается обширная лаборатория для научных исследований по теплоте. Реньо привлекает к своим исследованиям молодых ученых. В основном молодые исследователи из франции, Германии, Италии, Швеции, Швейцарии и России работали в Севрской лаборатории Реньо. Эксперименты, которые здесь проводились, относились к определению скрытой теплоты различных жидкостей при переходах из парообразного состояния в жидкое и наоборот. Методы тепловых измерений, предложенные Реньо, переносились в научные и учебные лаборатории высших учебных заведений, и еще в XX в. почти все физические практикумы университетов по теплоте были поставлены «по Реньо». Исследования Реньо начали публиковаться в конце 30-х годов XIX в. В 1847 г. вышел первый том его «Сообщений об опытах предприятий по распоряжению министров общественных работ». Лаборатория Реньо вместе с его последними трудами была уничтожена немцами при взятии Парижа в 1870 г. Реньо был ярким представителем экспериментального направления в физике XIX в. А. Г. Столетов совершенно точно характеризовал его: «Реньо не проводил новых идей в науке, если не считать того скептицизма, с которым он относился к слишком ранним обобщениям фактов и обличал неточность положений, до тех пор принимавшихся за непреложные законы. Новые идеи, как например механическая теория теплоты, проникли в науку помимо Реньо, можно сказать, вопреки ему: он не вдруг в них уверовал. Он считал себя работником, собирателем материалов, измерителем, и в этом смысле он не имеет себе подобного». Эта очень важная характеристика, данная Столетовым, может быть приложена не к одному Реньо, а ко многим, даже подавляющему большинству физиков первой половины XIX в. Таким был, например, уже упоминавшийся Иоганн Кристиан Поггендорф, внесший определенный вклад в развитие электрических измерений. Таким был и Генрих Густав Магнус (1802—1870), открывший известный «эффект Магнуса» физики этой школы, как справедливо указывал Столетов, настороженно и недоверчиво относились к новым теоретическим обобщениям, и рождение термодинамики было трудным. В общей обстановке эмпиризма лишь два исследования теоретического характера, выполненные в первой четверти столетия, стоят особняком. Первое исследование носило математический характер и оказало существенное влияние на развитие математической физики. Оно было выполнено французским математиком Жан Батистом Жозе-фом фурье (1768-1830). Его работа «Аналитическая теория тепла» содержала математическую теорию теплопроводности, которой фурье занимался начиная с 1807 г. Фурье вывел дифференциальное уравнение теплопроводности и разработал методы его интегрирования при заданных краевых условиях для некоторых частных случаев. В своей математической теории Фурье применил разложение функции в тригонометрический ряд (ряд фурье). Возникшая в математике дискуссия по этому поводу оказалась плодотворной, и в математическую физику прочно вошли ряды и интеграл Фурье. фурье рассматривал теплоту как некоторую жидкость (теплород). Большего ему не требовалось, и его теория казалась одним из достижений теории теплорода. Эту же теорию разделял и другой замечательный ученый, военный инженер Сади Карно (1796-1832). Сади Никола Леонард Карно был старшим сыном знаменитого «организатора победы» французской революции Лазаря Карно. Сади родился 1 июня 1796 г. В 1812 г. он поступил в Политехническую школу и окончил ее военным инженером в 1814 г. Наполеон к этому времени был разгромлен и сослан на остров Святой Елены. Отец Сади был осужден, и военная карьера самого Карно была сомнительной. Спустя три года после окончания школы он сдал экзамен и с чином поручика перешел в главный штаб, занимаясь в основном наукой, музыкой и спортом. В 1824 г. был издан его главный труд «Размышления о движущей силе огня». Через четыре года Карно вышел в отставку в чине капитана. Умер он 24 августа 1832 г. от холеры. «Размышления о движущей силе огня и о машинах, способных развивать эту силу» начинаются с характеристик огромной движущей силы тепла. «Развивать эту силу и приспособлять ее для наших нужд—такова цель тепловых машин», —пишет Карно. Он характеризует быстрое развитие тепловых машин и предсказывает им большое будущее: «Если когда-нибудь, — говорит Карно,— улучшения тепловой машины пойдут настолько далеко, что сделают дешевой ее установку и использование, то она соединит в себе все желательные качества и будет играть в промышленности роль, всю величину которой трудно предвидеть, ибо она не только заменит имеющиеся теперь в употреблении двигатели удобным и мощным двигателем, который можно повсюду перенести и поставить, но и даст тем производствам, к которым будет применена, быстрое развитие и может даже создать новые производства». Предвидение Карно блестяще оправдалось. Двигатели внутреннего сгорания и паровые турбины получили широкое развитие, создали новые производства: авиационное и автомобильное. Новые двигатели второй половины XX в — ракеты — создали сверхскоростной воздушный транспорт и вывели человечество в космос. «Движущая сила тепла» в наши дни играет огромную роль. Но во времена Карно она только начинала свой путь как малоэкономичная паровая машина. Хотя со времен Севери и Ньюкомена прошло более столетия и паровая машина прочно утвердилась в промышленности, сущность ее работы оставалась неясной, «явление получения движения из тепла не было рассмотрено с достаточно общей точки зрения», как отмечал Карно. Карно видит ненормальность случайных эмпирических усовершенствований паровых машин, он хочет дать теоретические основы теплотехники. В этом огромное историческое значение работы Карно, выходящее далеко за рамки специального исследования. Характерно, что он в своем труде не ограничивается существующими паровыми машинами, а говорит о тепловом двигателе вообще. «Чтобы рассмотреть принцип получения движения из тепла во всей его полноте, —пишет Карно,—надо его изучить независимо от какого-либо определенного агента; надо провести рассуждения, приложимые не только к паровым машинам, но и ко всем мыслимым тепловым машинам, каково бы ни было вещество, пущенное в дело и каким бы образом ни производилось воздействие» (подчеркнуто мною. —П. К.). Так, отправляясь от конкретной задачи, подсказанной практикой, Карно формулирует абстрактный, общий метод ее решения — термодинамический метод. Сочинение Карно явилось началом термодинамики. Карно ввел в термодинамику метод циклов. Цикл Карно описывается сегодня во всех учебниках физики. В них он сопровождается диаграммой процесса и расчетами для идеального газа, которых нет у Карно. Диаграмма и расчеты были даны в 1834 г. Клапейроном, который повторил работу Карно. Бенуа Поль Эмиль Клалейрон (1799— 1864), французский академик и инженер, был в 1820-1830 гг. профессором Петербургского института инженеров путей сообщения. В 1834 г. он дал общеупотребительную форму трактовки цикла Карно и объединенное уравнение газового состояния. Ему же принадлежит вывод зависимости точки плавления от давления (уравнение Клапейрона—Клаузиуса). Карно в своем исследовании придерживается еще теории теплорода. Он рассматривает работу тепловой машины как результат перепада теплорода с высшего уровня на низшие. «Возникновение движущей силы,— пишет Карно, — обязано в паровых машинах не действительной трате теплорода, а его переходу от горячего тела к холодному...» Общий вывод Карно формулирует следующим образом: «Движущая сила тепла не зависит от агентов, взятых для ее развития; ее количество исключительно определяется температурами тел, между которыми в конечном счете происходит перенос теплорода». В наше время этот вывод Карно формулируется иначе: коэффициент полезного действия идеальной тепловой машины не зависит от рабочего вещества, а зависит лишь от температуры нагревателя и холодильника. Вывод этот вошел в термодинамику в качестве фундаментального принципа, а сама работа Карно, изложенная Клапейроном и напечатанная в 1843 г. на немецком языке в «Анналах» Поггендорфа, послужила исходным пунктом для исследований В.Томсона и Р. Клаузиуса, приведших к открытию второго начала термодинамики. Хотя Карно в своей работе опирался на неверную теорию теплорода, его глубокий ум скоро почувствовал недостатки этой теории.(Исторический анализ пути, приведшего Карно к изложенному открытию, дан в работе Б. И. Спасского и Ц. С. Сарангова «К истории открытия теоремы Карно», УФН, 1960, т. 99, вып. 2.) Карно сделал следующее примечание к своей ра,боте: «Основные положения, на которые опирается теория тепла, требуют внимательного исследования. Некоторые данные опыта представляются необъяснимыми при современном состоянии теории». В своем дневнике, выдержки из которого были опубликованы его братом после смерти Карно, он пишет: «Тепло не что иное, как движущая сила или, вернее, движение, изменившее свой вид; это движение частиц тел; повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно: всегда при исчезновении тепла возникает движущая сила. Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается; в действительности она меняет форму, т. е. вызывает то один род движения, то другой, но никогда не исчезает». Если заменить слова «движущая сила» словом «энергия», то мы получим законченную формулировку закона сохранения энергии. В последней формуле Карно дает значение механического эквивалента теплоты. Оно равно 370 кгс • м на 1 ккал, т. е. имеет правильный порядок величины. Таким образом уже к 30-м годам XIX в. настало время для возвращения к идеям Ломоносова относительно теплоты. К сожалению, имя Ломоносова к тому времени на Западе было основательно забыто, и основоположники механической теории теплоты создавали ее заново. Открытие закона сохранения и превращения энергии. В.И.Ленин указывал, что развитие познания совершается по спирали. Наступает время, когда наука возвращается к идеям, однажды уже высказанным. Но это возвращение совершается на новом, более высоком уровне, которому предшествовал длительный исторический опыт познания. Ленин указывал, что попытки сохранить господствующие идеи, продолжить движение науки по прямой приводят к окостенению познания, к реакции, к идеализму. Мысли Ленина о развили познания блестяще подтверждаются историей открытия закона сохранения энергии. Воззрения на теплоту как форму движения мельчайших «нечувствительных» частиц материи высказывались еще в XVII в. ф. Бэкон, Декарт, Ньютон, Гук и многие другие приходили к мысли, что теплота связана с движением частиц вещества. Но со всей полнотой и определенностью эту идею разрабатывал и отстаивал Ломоносов. Однако он был в одиночестве, его современники переходили на сторону концепции теплорода, и, как мы видели, эта концепция разделялась многими выдающимися учеными XIX столетия. Успехи экспериментальной теплофизики, и прежде всего калориметрии, казалось, свидетельствовали в пользу теплорода. Но тот же XIX в. принес наглядные доказательства связи теплоты с механическим движением. Конечно, факт выделения тепла при трении был известен с незапамятных времен. Сторонники теплоты усматривали в этом явлении нечто аналогичное электризации тел трением —трение способствует выжиманию теплорода из тела. Однако в 1798 г.БенжаменТомпсон (1753-1814), ставший с 1790 г. графом Румфордом, сделал в мюнхенских военных мастерских важное наблюдение: при высверливании канала в пушечном стволе выделяется большое количество тепла. Чтобы точно исследовать это явление, Румфорд проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал помещали тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение. Термометр, вставленный в цилиндр, показал, что за 30 минут операции температура поднялась на 70 градусов Фаренгейта. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой. В процессе сверления вода нагревалась и спустя 2,5 часа закипала. Этот опыт Румфорд считал доказательством того, что теплота является формой движения. Опыты по получению теплоты трением повторил Дэви. Он плавил лед трением двух кусков друг о друга. Дэви пришел к выводу, что следует оставить гипотезу о теплороде и рассматривать теплоту как колебательное движение частиц материи. Эта гипотеза была поддержана Юнгом. В 1837 г. немецкий аптекарь (с 1867 г. профессор фармакологии) Фридрих Мор (1806—1879) послал редактору журнала «Annalen der Physik» Поггендорфу статью «О природе теплоты». Тот ее не принял, сославшись на то, что статья не содержит новых экспериментальных исследований. В ней Мор со всей определенностью указывал, что теплота является формой движения. Мы видели, как фарадей в споре со сторонниками контактной теории в 1839—1840 гг. утверждал идею превращения сил с сохранением их постоянной количественной величины, фарадей по характеру мышления резко отличался от профессиональных ученых. Поэтому можно с полным основанием утверждать, что идея закона сохранения и превращения энергии вызревала не у специалистов-физиков. И не специалисты сыграли решающую роль в утверждении великого закона. Врач Майер, пивовар Джоуль, врач Гельмгольц — вот те три человека, за которыми история науки навсегда закрепила славу открывателей закона сохранения и превращения энергии. Майер. Юлиус Роберт Майер родился 25 ноября 1814 г. в Гейльбронне в семье аптекаря. Он получил медицинское образование и отправился в качестве корабельного врача на о. Ява (до этого он несколько месяцев работал в клиниках Парижа). В течение годичного плавания (1840—1841) врач Майер пришел к своему великому открытию. По его словам, на этот вывод его натолкнули наблюдения над изменением цвета крови у людей в тропиках. Производя многочисленные кровопускания на рейде в Батавии, Майер заметил, что «кровь, выпускаемая из ручной вены, отличалась такой необыкновенной краснотой, что, судя по цвету, я мог бы думать, что я попал на артерию». Он сделал отсюда вывод, что «температурная разница между собственным теплом организма и теплом окружающей среды должна находиться в количественном соотношении с разницей в цвете обоих видов крови, т. е. артериальной и венозной... Эта разница в цвете является выражением размера потребления кислорода или силы процесса сгорания, происходящего в организме». Во времена Майера было распространено учение о жизненной силе организма (витализм). Живой организм действует благодаря наличию в нем особой жизненной силы. Тем самым физиологические процессы исключались из сферы физических и химических законов и обусловливались таинственной жизненной силой. Майер своим наблюдением показал, что организм управляется естественными физико-химическими законами, и прежде всего законом сохранения и превращения энергии. Вернувшись из путешествия, он тут же написал статью под заглавием «О количественном и качественном определении сил», которую направил 16 июня 1841 г. в журнал «Анналы...» Поггендорфу. Тот не напечатал статью и не вернул ее автору, она пролежала в его письменном столе 36 лет, где и была обнаружена после смерти Поггендорфа. Поггендорф имел определенные основания отнестись сурово к работе Майера. Великая идея в ней выступает еще в неясной форме, статья содержит туманные и даже ошибочные утверждения. Вместе с тем в ней имеются гениальные высказывания, которые свидетельствуют о ясном понимании Майе-ром величия сделанного им открытия. Она начинается с общего утверждения, что «мы можем вывести все явления из некоторой первичной силы, действующей в направлении уничтожения существующих разностей и объединения всего сущего в однородную массу в одной математической точке». По Майеру, следовательно, все движения и изменения в мире порождаются «разностями», вызывающими силы, стремящиеся уничтожить эти разности. Но движение не прекращается, потому что силы неуничтожаемы и восстанавливают разности. «Таким образом, принцип, согласно которому раз данные силы количественно неизменны, подобно веществам, логически обеспечивает нам продолжение существования разностей, а значит, и материального мира». Эта формулировка, предложенная Майером, легко уязвима для критики. Не определено точно понятие «разность», неясно, что понимается под термином «сила». Это предчувствие закона, а не самый еще закон. Но из дальнейшего изложения понятно, что под силой он понимает причину движения, которое измеряется произведением массы на скорость. Но причины измеряются произведенным действием, следовательно, «это произведение МС точно выражает также самую силу V; мы положим V = МС». Ошибка Майера, пе репутавшего количество движения с «силой», под которой он в дальнейшем понимает «энергию движения», очевидна. Но замечательно, что, рассматривая соударение двух тел равной массы, движущихся навстречу друг другу с равными скоростями, Майер описывает исчезновение механического движения оператором 0 («нуль») и считает, что движение 2АС (A — масса тел, С — скорость) при абсолютно неупругом ударе не исчезло, а превратилось в другую форму, которую он обозначает символом 02АС, а несколько позднее 02МС. Майер считает, что этой формой движения является теплота, и пишет. «Нейтрализованное движение 02МС, поскольку движение не происходит действительно в противоположных направлениях, служит выражением для теплоты. Движение, теплота, и как мы намерены показать в дальнейшем, электричество представляют собою явления, которые могут быть сведены к одной силе, которые измеряются друг другом и переходят друг в друга по определенным законам». Это вполне определенная и ясная формулировка закона сохранения и превращения силы, т. е. энергии. В первой половине цитаты Майер говорит о конкретном случае применения закона при неупругом ударе («поскольку движения не происходят действительно в противоположных направлениях»), исчезнувшее механическое движение переходит в тепло. То, о чем думали еще Декарт и особенно Ломоносов, высказано теперь Майером со всей категоричностью: «...Образовавшаяся теплота, — пишет он, — пропорциональна исчезнувшему движению». Однако в этой незаконченной работе Майер не дает количественной оценки механического эквивалента теплоты. Такая оценка появилась в следующей работе Майера—«Замечания о силах неживой природы», опубликованной в «Annalen der chemie und Pharmazie» за 1842 г. Здесь Майер ставит своей задачей уточнить понятие «силы» и найти соотношение между ними. Поскольку, по мнению Майера, силы являются причинами, к ним применимо общефилософское положение: «...causa aequat effectum (причина равна действию)». Так как в цепи причин и действий ни один член не может стать нулем, то силы неразрушимы. Вместе с тем различные причины являются проявлением одной и той же сущности. «...Причины,—говорит Майер,—суть (количественно) неразрушимые и (качественно) способные к превращениям объекты». По Май-еру, в природе существуют два вида причин: материальные и силы. «Силы суть следовательно: неразрушимые, способные к превращениям, невесомые объекты». К таким объектам относится «...пространственная разность весомых объектов», т. е. то, что теперь мы называем потенциальной энергией тяжелого тела в поле тяжести. Майер подчеркивает, что для этой силы, которую он называет силой падения, поднятие не менее необходимо, чем тяжесть тела, и падение тел нельзя приписывать только действию тяжести. Исчезновение силы падения сопровождается появлением живой силы, которую Майер измеряет произведением массы на квадрат скорости. Закон сохранения живых сил в механике основан, по Майеру, «на общем законе неразрушимости причин». Однако в «бесконечном числе случаев» сила падения не превращается в движение или поднятие груза, и Майер ставит вопрос: «Какую дальнейшую форму способна принять сила, которую мы познали как силу падения или движения?». Ответ на этот вопрос дает опыт, который показывает, что при трении получается теплота. «...Для исчезающего движения, —говорит Майер,— во многих случаях... не может быть найдено никакого другого действия, кроме тепла, а для возникшего тепла — никакой другой причины, кроме движения...» Майер иллюстрирует эту мысль весьма современным для его эпохи примером локомотива: «Локомотив с его поездом может быть сравнен с перегонным аппаратом: тепло, разведенное под котлом, превращается в движение, а таковое снова осаждается на осях колес в качестве тепла». Народившая ся теплотехника, подсказавшая Карно тему его замечательного сочинения, подсказала и творцам закона сохранения и превращения энергии их великую идею. Образ локомотива, появившийся в первой печатной работе Майера, наглядно подтверждает это. Далее, Майер ставит вопрос о том, «как велико соответствующее определенному количеству силы падения или движения количество тепла», т. е. ставит вопрос о термическом эквиваленте работы. И спользуя соотношение между теплоемкостями газов при постоянном давлении и постоянном объеме, он приходит к выводу, «что опусканию единицы веса с высоты около 365 м соответствует нагревание равного веса воды от 0 до 1°». Таким образом, Майер указал совершенно правильный метод определения механического эквивалента теплоты и правильно оценил его порядок (так же как и Карно). История науки отметила эту заслугу Майера, присвоив уравнению ср - сV = R название «уравнение Майера». Особенно замечательно, что Майер из своего результата сделал совершенно правильный вывод о несовершенстве паровых машин. «Если с этим результатом, — пишет он, — сравнить полезное действие наших лучших паровых машин, то увидим, что лишь очень малая часть разводимого под котлом тепла действительно.превращается в движение или поднятие груза...» И здесь Майер высказывает замечательный прогноз о необходимости искать «более выгодный путь получения движения иным способом, чем посредством использования химической разности между С и 0, а именно — посредством превращения в движение электричества, полученного химическим путем». Современные электровозы, сменившие локомотивы, подтвердили правоту Майера. Но задача замены двигателей внутреннего сгорания в автомобилях и тракторах электромоторами, питающимися удобными и экономичными химическими источниками, остается еще не решенной. Можно, подводя итоги, сказать, что, несмотря на двусмысленность термина «силы», неверную меру живой силы ( вместо ), эта работа Майера по праву считается основополагающей в истории закона сохранения и превращения энергии. Особенно важна идея Майера о качественном превращении сил (энергии) при их количественном сохранении. Майер подробно анализирует всевозможные формы превращения энергии в брошюре «Органическое движение в его связи с обменом вещества», вышедшей в Гейльбронне в 1845 г. Майер сначала думал опубликовать свою статью в тех же «Анналах химии и фармации», в которых была опубликована статья 1842 г., но редактор Либих, сославшись на перегрузку журнала химическими статьями, посоветовал переслать статью в «Анналы» Поггендорфа. Майер, понимая, что Поггендорф поступит с ней так же, как со статьей 1841 г., решил опубликовать статью брошюрой за свой счет. Таким образом, первая статья Майера не была опубликована вообще, вторая увидела свет в не читаемом физиками химическом журнале, третья — в частной брошюре. Вполне понятно, что открытие Майера не дошло до физиков, и закон сохранения открывали независимо от него и другими путями другие авторы, прежде всего Джоуль и Гельмгольц. Закономерно также, что Майер оказался втянутым в тягостно отразившийся на нем спор о приоритете. Вернемся к брошюре Майера. Она начинается с указания, что математика получила широкое применение в технике и естествознании, «являясь прочной осью естественнонаучного исследования». Однако в биологии ее влияние незначительно, «между математической физикой и физиологией живо чувствуется пропасть». Задача сочинения Майера—«установить метод, посредством которого оказалось бы возможным сблизить эти обе науки...» Опять-таки можно поражаться прозорливости Майера и его смелости в выборе цели. Только в наши дни благодаря введению кибернетических методов началось сближение биологии, математики и техники, о котором думал Майер. Задавшись целью применить идеи механики в физиологии, Майер начинает с выяснения понятия силы. И здесь он вновь повторяет мысль о невозможности возникновения движения из ничего «Ex nihilo nil fit» («из ничего ничего не бывает»), сила—причина движения, а причина движения является неразрушимым объектом. «Количественная неизменность данного есть верховный закон природы, распространяющийся равным образом как на силу, так и на материю», — провозглашает Майер. Эта формулировка поразительно напоминает формулировку «всеобщего закона» Ломоносова, распространяемого им «и на самые правила движения». Заметим, что выдвижение Ломоносовым и Майером всеобщего закона сохранения в качестве «верховного закона природы» принято современной наукой, которая формулирует многочисленные конкретные законы сохранения в качестве основной опоры научного исследования. Майер считает закон сохранения вещества прерогативой химии, закон сохранения силы — прерогативой физики. «То, что химия выполняет в отношении вещества, осуществляется физикой в отношении силы», —пишет Майер. Он говорит, что единственная задача физики — изучение силы в ее различных формах, исследование условий ее превращения. Таким образом, если химия, по Майеру, является наукой о превращении вещества, то физика является наукой о превращении силы, т. е. энергии. В своей брошюре Майер перечисляет различные формы силы. Это, во-первых, «живая сила движения», т. е. кинетическая энергия движущихся масс. На второе место Майер ставит «силу падения», т. е. потенциальную энергию поднятого груза. «Величина силы падения измеряется произведением веса на данную высоту; величина движения — произведением движущейся массы на квадрат его скорости. Обе силы объединены также общим названием: «механический эффект». Майер упорно опускает коэффициент 1/2 в выражении кинетической энергии, но он правильно объединяет потенциальную и кинетическую энергию как две формы механической энергии (механического эффекта). Упомянув об исторической задаче человека: использовать для получения движения силы природы, — Майер характеризует современную ему техническую практику следующими словами: «Новому времени выпало на долю к силам старого мира — движущемуся воздуху и падающей воде — присоединить еще одну новую силу. Этой новой силой, на действия которой с удивлением смотрят люди нашего столетия, является тепло». И далее Майер утверждает: «Тепло есть сила: оно может быть превращено в механический эффект». На современном языке это утверждение Майера гласит: тепло есть энергия, оно может совершить механическую работу. Он подсчитывает работу локомотива, тянущего состав, и утверждает: «Действующая в локомотиве сила есть тепло». Майер подробно подсчитывает механический эквивалент теплоты из разности теплоемкостей газа (этот подсчет нередко воспроизводится в школьных учебниках физики) и находит его, опираясь на измерения Делароша и Берара, а также Дюлонга, определивших отношение теплоемкостей для воздуха равным 367 кгс • м/ккал.( 1 кгс- м—употреблявшаяся ранее единица работы. Она равна 9,8 Дж.) Майер приводит данные по теплотворной способности углерода и обращает внимание на низкий коэффициент полезного действия тепловых машин, максимальное значение которого в современных ему машинах составляло 5—6%, а в локомотивах не достигало и одного процента. Затем Майер переходит к электричеству. Он рассматривает электризацию трением, действие электрофора и указывает, что здесь «механический эффект превращается в электричество». Бегло остановившись на магнетизме, он делает вывод: затрата механического эффекта вызывает как электрическое, так и магнетическое напряжение. Здесь в анализе Майера недостает той законченности и ясности, какая обнаруживается у него при анализе взаимоотношения теплоты и механического движения. Электричество и магнетизм еще не были изучены столь подробно, как теплота, электрические измерения носили качественный характер, основные понятия не были четко разработаны. Нужно удивляться гениальной интуиции Майера, понявшего, что эти процессы подчиняются закону сохранения энергии. В заключение своего анализа Майер останавливается на «химической силе». Интересно, что вопрос о химической энергии у него сочетается с вопросом об энергетике солнечной системы. Он указывает, что поток солнечной энергии (силы), являющийся и на нашу Землю, «есть та непрестанно заводящаяся пружина, которая поддерживает в состоянии движения механизм всех происходящих на Земле деятельностей». Майер набрасывает картину того механизма, который обеспечивает жизнь на Земле, круговорот воды и воздуха под действием солнечных лучей и аккумулирования солнечной энергии для жизненных процессов. «Природа, — пишет Майер, — поставила перед собой задачу поймать на лету льющийся на Землю свет и накопить самую подвижную силу, приведя ее в неподвижное состояние. Для достижения этой цели она покрыла земную кору организмами, которые, живя, поглощают солнечный свет и при использовании этой силы порождают непрерывно возобновляющуюся сумму химических различий. Этими организмами являются растения». Так Майер раскрыл космическую роль растений и выдвинул перед наукой проблему фотосинтеза. Недаром строки его книги, посвященные анализу превращений солнечной энергии в живых организмах, вдохновили великого русского ученого К.А.Тимирязева, и он предпослал своей книге «Солнце, жизнь и хлорофилл» эпиграф из этой статьи Майера. Тимирязев подчеркивал в этой книге, что «рассматриваемый с точки зрения Майера процесс усвоения углерода приобретает новый и еще более широкий интерес». Майер закончил развитие своих идей к 1848 г., когда в брошюре «Динамика неба в популярном изложении» он поставил и сделал попытку решить важнейшую проблему об источнике солнечной энергии. Майер понял, что химическая энергия недостаточна для восполнения огромных расходов энергии Солнца. Но из других источников энергии в его время была известна только механическая энергия. И Майер сделал вывод, что теплота Солнца восполняется бомбардировкой его метеоритами, падающими на него со всех сторон непрерывно из окружающего пространства. В работе 1851 г. «Замечания о механическом эквиваленте теплоты» Майер излагает сжато и популярно свои идеи о сохранении и превращении силы. Здесь он впервые защищает свой приоритет. Он признает, что открытие сделано им случайно (наблюдение на Яве), но «оно все же моя собственность, и я не колеблюсь защищать свое право приоритета». Он ссылается на свою статью 1842 г., цитирует» ее, приводит значение механического эквивалента теплоты, разъясняет свои взгляды на силу, которую он рассматривает как то, что позднее назвали энергией. Майер указывает далее, что закон сохранения энергии, «а также численное выражение его, механический эквивалент теплоты, были почти одновременно опубликованы в Германии и Англии». Он указывает на исследования Джоуля и признает, что Джоуль «открыл безусловно самостоятельно» • закон сохранения и превращения энергии и что «ему принадлежат многочисленные важные заслуги в деле дальнейшего обоснования и развития этого закона». Но Май ер не склонен уступать свое право на приоритет и указывает, что из самих его работ видно, что он не гонится за эффектом. Это, однако, не означает отказа от прав на свою собственность. Спокойный и достойный тон его заявлений о приоритете маскирует ту глубокую душевную травму, которая была нанесена ему «мелкой завистью цеховых ученых» и «невежеством окружающей среды», по словам К. А. Тимирязева. Достаточно сказать, что в 1850 г. он пытался покончить жизнь самоубийством, выбросившись из окна, и остался на всю жизнь хромым. Его травили в газетах, обвиняли скромного и честного ученого в мании величия, подвергли принудительному «лечению» в психиатрической больнице. С негодованием писал К.А.Тимирязев о тех, кто преследовал Майера и искалечил его жизнь «за то только, что он был гениальным ученым в среде окружающей его жалкой посредственности». Майер умер 20 марта 1878 г. Незадолго до смерти, в 1874 г. вышло собрание его трудов по закону сохранения и превращения энергии под заглавием «Механика тепла». В 1876 г. вышли его последние сочинения «О торричеллиевой пустоте» и «Об освобождении сил». Джоуль. Широкое, философское понимание закона сохранения энергии Майером, обобщение им закона на явления жизни и космос смущали физиков и рассматривались ими как метафизические размышления. Но проводимые одновременно и независимо от Майера эксперименты Джоуля подвели под обобщения Майера прочную экспериментальную основу. Джеймс Прескотт Джоуль, манчестерский пивовар, владелец большого пивоваренного завода, родился 24 декабря 1818 г. Он рано увлекся электрическими исследованиями и конструированием электрических приборов, которые описывал систематически в небольшом специальном журнале. В октябре 1841 г. он опубликовал в «Philosophical Magazine» статью о тепловом эффекте электрического тока, в которой установил, что количество теплоты, выделяемое током в проводнике, пропорционально квадрату силы тока. Задолго до Джоуля аналогичные исследования были начаты петербургским академиком Э.Х. Ленцем, который опубликовал свою работу в 1843 г. под заглавием «О законах выделения тепла гальваническим током». Ленц упоминает о работе Джоуля, публикация которого опередила публикацию Ленца, но считает, что, хотя его результаты в «основном совпадают с результатами Джоуля», они свободны от тех обоснованных возражений, которые вызывают работы Джоуля. Ленц тщательно продумал и разработал методику эксперимента, испытал и проверил тангенс-гальванометр, служивший у него измерителем тока, определил применяемую им единицу сопротивления (напомним, что закон Ома к этому времени еще не вошел во всеобщее употребление), а также единицы тока и электродвижущей силы, выразив последнюю через единицы тока и сопротивления. Ленц тщательно изучил поведение сопротивлений, в частности исследовал вопросе существовании так называемого «переходного сопротивления» при переходе из твердого тела в жидкость. Это понятие вводилось некоторыми физиками в эпоху, когда закон Ома еще не был общепризнанным. Затем он перешел к основному эксперименту, результаты которого сформулировал в следующих двух положениях: «1. Нагревание проволоки гальваническим током пропорционально сопротивлению проволоки. 2. Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока». Точность и обстоятельность опытов Ленца обеспечили признание закона, вошедшего в науку под названием закона Джоуля — Ленца. Джоуль сделал свои эксперименты по выделению тепла электрическим током исходным пунктом дальнейших исследований выяснения связи между теплотой и работой. Уже на первых опытах он стал догадываться, что теплота, выделяемая в проволоке, соединяющей полюсы гальванической батареи, порождается химическими превращениями в батарее, т. е. стал прозревать энергетический смысл закона. Чтобы выяснить далее вопрос о происхождении «джоулева тепла» (как теперь называется теплота, выделяемая электрическим током), он стал исследовать теплоту, выделяемую индуцированным током. В работе «О тепловом эффекте магнитоэлектричества и механическом эффекте теплоты», доложенной на собрании Британской Ассоциации в августе 1843 г., Джоуль сформулировал вывод, что теплоту можно создавать с помощью механической работы, используя магнитоэлектричество (электромаь нитную индукцию), и эта теплота пропорциональна квадрату силы индукционного тока. Рис. 41. Схема опыта Джоуля Вращая электромагнит индукционной машины с помощью падающего груза, Джоуль определил соотношение между работой падающего груза и теплотой, выделяемой в цепи. Он нашел в качестве среднего результата из своих измерений, что «количество тепла, которое в состоянии нагреть один фунт воды на один градус Фаренгейта, может быть превращено в механическую силу, которая в состоянии поднять 838 фунтов на вертикальную высоту в один фут». Переводя единицы фунт и фут в килограммы и метры и градус Фаренгейта в градус Цельсия, найдем, что механический эквивалент тепла, вычисленный Джоулем, равен 460 кгс-м/ккал. Этот вывод приводит Джоуля к другому, более общему выводу, который он обещает проверить в дальнейших экспериментах: «Могучие силы природы... неразрушимы,и... во всех случаях, когда затрачивается механическая сила, получается точное эквивалентное количество теплоты». Он утверждает, что животная теплота возникает в результате химических превращений в организме и что сами химические превращения являются результатом действия химических сил, возникающих из «падения атомов» Таким образом, в работе 1843 г. Джоуль приходит к тем же выводам, к которым ранее пришел Майер. Сообщение Джоуля было встречено собранием Британской Ассоциации с недоверием. Джоулю не было еще 25 лет, когда он выступил с этими новыми революционными воззрениями. Однако Джоуль продолжал свои исследования и в 1845 г. опубликовал работу «Об изменениях температуры, вызванных сгущением и разрежением воздуха». Как и в работе 1843 г., экспериментальная установка помещалась в сосуд с водой, служивший калориметром. Установка состояла из нагнетательного насоса и сосуда с воздухом, подвергающимся сжатию. Воздух сжимался до 22 атмосфер, и измерялась выделяемая при этом теплота. Джоуль показал себя искусным и вдумчивым экспериментатором. Он принял меры для обеспечения постоянства температуры поступающего воздуха, учел поправки на теплоту, производимую трением, и установил, что механический эквивалент тепла в этом опыте равен 795 футо-фунтов на килокалорию (436 кгс-м/ккал). Затем Джоуль поместил в сосуд с водой два одинаковых сосуда, соединенные трубкой. В одном из сосудов воздух был сжат до 22 атмосфер, а из другого выкачан. Когда между обоими сосудами устанавливалось сообщение, измеряли температуру водяного резервуара. Она, как определил Джоуль, оставалась неизменной. Из этого часто описываемого в курсах термодинамики опыта Джоуль сделал вывод, что теплота не может быть веществом, она состоит в движении частиц тела. Из многочисленных опытов по нагреванию воздуха сжатием Джоуль нашел механический эквивалент теплоты равным 798 футо-фунтам на килокалорию (438 кгc*м/ккал). Во второй работе 1845 г. и в работе 1847 г. Джоуль описывает многочисленные опыты с перемешиванием воды в калориметре. В 1850 г. он произвел новые классические опыты, из которых нашел значение механического эквивалента равным 424 кгс*м/ккал. За опытами Джоуля с большим интересом следил молодой шотландский физик Вильям Томсон, будущий лорд Кельвин. Томсон еще в 1848 г. считал, что «превращение теплоты в механическую энергию, вероятно, невозможно и, безусловно, еще не открыто». Кажется странным, что современник паровых машин, паровозов и пароходов говорит о невозможности превращения теплоты в механическую энергию, но у Томсона, видимо, речь идет о другом. Он пишет: «Такой вывод можно сделать исходя из всего, что написано на эту тему. Противоположная точка зрения выдвигается Джоулем из Манчестера, поставившим целый ряд в высшей степени интересных опытов по выделению теплоты при трении жидкостей; некоторые хорошо известные явления в области электромагнетизма, по-видимому, в самом деле указывают на переход механической энергии в тепловую, но опыты, при которых имело бы место обратное преобразование, им не проводились». Томсон знал работу Карно, знал, что Карно стоял на точке зрения теплорода. Ему известно было также, что ни Джоуль, ни кто-либо другой не проводил опытов по превращению теплоты в работу без остатка. Так намечался подход к будущему второму началу термодинамики. Тем не менее Томсон уже тогда глубоко интересовался работами Джоуля и в пятидесятых годах XIX в. провел совместно с ним знаменитый эксперимент, приведший к открытию эффекта, носящего имя Джоуля —Томсона. Джоуль продолжал свои эксперименты и в 60-х и в 70-х годах. В 1870 г. он вошел в состав комиссии по определению механического эквивалента теплоты. В состав этой комиссии входили В. Томсон, Максвелл и другие ученые. Но Джоуль не ограничился работой экспериментатора. Он решительно встал на точку зрения кинетической теории теплоты и стал одним из основоположников кинетической теории газов. Об этой работе Джоуля будет сказано позднее. Как мы уже говорили, Майер считал Джоуля одним из открывателей закона сохранения и превращения энергии. Но тогда уже многие претендовали на приоритет в этом открытии. Датский инженер Людвиг Август Кольдинг доложил в 1843 г. в Королевском Копенгагенском обществе о результатах своих опытов по определению отношения между механической работой и теплотой, которое он нашел равным 350. Майер упоминает о Гольцмане, который в 1845 г. вычислил механический эквивалент теплоты тем же методом, что и Майер. Можно было бы назвать ряд других имен, в той или иной мере причастных к великому открытию. Все это лишний раз доказывает, что время для открытия закона назрело и что к его открытию приходили разными путями врачи, ижене-ры, заводчики. Вопреки воззрениям цеховых ученых это красноречиво говорит о том, что жизнь и ее запросы являются основными двигателями научного прогресса. Джоуль умер 11 октября 1889 г., за пять лет до смерти третьего члена «триады» Германа Гельмгольца. Гельмгольц. Гельмгольц был одним из самых знаменитых физиков второй половины XIX столетия, общепризнанным лидером физической науки. Герман Людвиг фердинанд Гельмгольц родился 31 августа 1821 г. в семье потсдамского учителя гимназии, в городе, бывшем резиденцией прусских королей, в том самом Потсдаме, где спустя 124 года после его рождения состоялась Потсдамская конференция, зафиксировавшая разгром фашистской Германии. Гельмгольц получил медицинское образование, и его диссертация, защищенная им в 1842 г., была посвящена строению нервной системы. В этой работе двадцатидвухлетний врач впервые доказал существование целостных структурных элементов нервной ткани, получивших позднее название нейронов. С 1843 г. начался служебный путь Гельмгольца в качестве потсдамского военного врача. Эскадронный хирург гусарского полка находил время и для занятия наукой. В 1845 г. он едет в Берлин для подготовки к государственным экзаменам на звание врача и здесь усердно занимается в домашней физической лаборатории Густава Магнуса. Другим учителем Гельмгольца в Берлине был известный физиолог Иоганн Мюллер. В журнале Мюллера Гельмгольц опубликовал в 1845 г. работу «О расходовании вещества при действии мышц». В том же, 1845 г. молодые ученые, группировавшиеся вокруг Магнуса и Мюллера, образовали Берлинское физическое общество. В него вошел и Гельмгольц. С 1845 г. общество, превратившееся в дальнейшем в Немецкое физическое общество, стало издавать первый реферативный журнал «Успехи физики» («Fortschritte der Physik»). Научное развитие Гельмгольца происходило, таким образом, в благоприятной обстановке возросшего интереса к естествознанию в Берлине. Уже в первом томе «Fortschritte der Physik in Jahre 1845», вышедшем в Берлине в 1847 г., был напечатан обзор, выполненный Гельмгольцем по теории физиологических тепловых явлений. 23 июля 1847 г он сделал на заседании Берлинского физического общества доклад «О сохранении силы». Подобно Майеру, Гельмгольц от физиологии перешел к закону сохранения энергии. Так же, как и у Майера, Поггендорф не принял работу Гельмгольца, и она была опубликована отдельной брошюрой в 1847 г. На чествовании Гельмгольца по случаю его 70-летия он произнес 2 ноября 1891 г. речь, в которой охарактеризовал свой научный путь. Он указал, что под влиянием Иоганна Мюллера заинтересовался вопросом о загадочной сущности жизненной силы. Сам Мюллер в этом вопросе колебался между метафизическим учением виталистов и естественнонаучным подходом. Размышляя над этой проблемой, Гельмгольц в последний год студенчества пришел к выводу, что теория жизненной силы «приписывает всякому живому телу свойства так называемого perpetuum mobile». Гельмгольц был знаком с проблемой perpetuum mobile со школьных лет, а в студенческие годы «в свободные минуты... разыскивал и просматривал сочинения Даниила Бернулли, Даламбера и других математиков прошлого столетия». «Таким образом, я,— говорил Гельмгольц, — натолкнулся на вопрос: «Какие отношения должны существовать между различными силами природы, если принять, что perpetuum mobile вообще невозможен?» и далее: «Выполняются ли в действительности все эти отношения?» В моей книжке о сохранении силы я намеревался только дать критическую оценку и систематику фактов в интересах физиологов». Гельмгольц рассказывал, что авторитеты в то время не только не сочли его мысли известными, но, наоборот, «были склонны отвергать справедливость закона; среди той ревностной борьбы, какую они вели с натурфилософией Гегеля, и моя работа была сочтена за фантастическое умствование...». Однако в отличие от Майера Гельмгольц не был одинок, его поддержала научная молодежь, и прежде всего будущий знаменитый физиолог Дюбуа Реймон (1818—1896), и молодое Берлинское физическое общество. Что же касается отношения к работам Майера и Джоуля, то Гельмгольц неоднократно признавал приоритет Майера и Джоуля, подчеркивая, однако, что с работой Майера он не был знаком, а работы Джоуля знал недостаточно. Обратимся к самой работе Гельмгольца. В отличие от своих предшественников он связывает закон с принципом невозможности вечного двигателя (perpetuum mobile). Этот принцип принимал еще Леонардо да Винчи, ученые XVII в. (вспомним, что Стевин обосновал закон наклонной плоскости невозможностью вечного движения), и, наконец, в XVIII в. Парижская Академия наук отказалась рассматривать проекты вечного двигателя. Гельмгольц считает принцип невозможности вечного двигателя тождественным принципу, что «все действия в природе можно свести на притягательные или отталкивательные силы». Материю Гельмгольц рассматривает как пассивную и неподвижную. Для того чтобы описать изменения, происходящие в мире, ее надо наделить силами как притягательными, так и отталкива-тельными. «..Явления природы, — пишет Гельмгольц, — должны быть сведены к движениям материи с неизменными движущими силами, которые зависят только от пространственных взаимоотношений». Таким образом, мир, по Гельмгольцу, — это совокупность материальных точек, взаимодействующих друг с другом с центральными силами. Силы эти консервативны, и Гельмгольц во главу своего исследования ставит принцип сохранения живой силы Принцип Майера «из ничего ничего не бывает» Гельмгольц заменяет более конкретным положением, что «невозможно при существовании любой произвольной комбинации тел природы получать непрерывно из ничего движущую Силу». Этот принцип требует, чтобы «количество работы, которое получается, когда тела системы переходят из начального положения во второе, и количество работы, которое затрачивается, когда они переходят из второго положения в первое, всегда было одно и то же, каков бы ни был способ перехода, путь перехода или его скорость». При этом мерой произведенной работы Гельмгольц считает половину про изведения (mv)2. «Для лучшего согласования с употребительным в настоящее время способом измерения силы я предлагаю величину 1/2(mv)2 обозначить как количество живой силы, благодаря чему она будет тождественна по величине с величиной затраченной работы». Таков важный шаг, сделанный Гельмголь-цем, в развитии закона сохранения энергии. Принцип сохранения живой силы в его формулировке гласит: «Если любое число подвижных материальных точек движется только под влиянием таких сил, которые зависят от взаимодействия точек друг на друга или которые направлены к неподвижным центрам, то сумма живых сил всех взятых вместе точек останется одна и та же во все моменты времени, в которые все точки получают те же самые относительные положения друг по отношению к другу и по отношению к существующим неподвижным центрам, каковы бы ни были их траектории и скорости в промежутках между соответствующими моментами». Гельмгольц выражает этот принцип математически формулой: где Q и q - скорости в положениях R и г, Ф - «величина силы, которая действует по направлению r» и «считается положительной, если имеется притяжение, и отрицательной, если наблюдается отталкивание...». Величину, выражаемую интегралом ?dr, Гельмгольц называет «суммой напряженных сил между расстояниями R и г», и закон сохранения энергии получает следующую формулировку: «увеличение живой силы точки при ее движении под влиянием центральной силы равно сумме соответствующих изменению ее расстояния напряженных сил». Сегодня мы вместо «увеличение живой силы» говорим «приращение кинетической энергии» и вместо «сумма напряженных сил» — «убыль потенциальной энергии». Переходя к системе точек, Гельмгольц устанавливает общее положение: «Всегда сумма существующих в системе напряженных сил и живых сил постоянна». «В этой наиболее общей форме, — пишет Гельмгольц, — мы можем наш закон назвать принципом сохранения силы». Сформулировав этот принцип, Гельмгольц рассматривает его применения в различных частных случаях. Он указывает, что сохранение живых сил уже применялось в таких случаях, как движения, происходящие под влиянием силы всемирного тяготения, в явлениях передачи движений при посредстве несжимаемых твердых и жидких тел, в движениях вполне упругих твердых и жидких тел. Останавливаясь, в частности, на явлениях интерференции волн, распространяющихся в упругой среде, Гельмгольц показывает, что при интерференции «не имеется никакого уничтожения живой силы, а лишь только иное распределение ее». Рассматривая электрические явления, Гельмгольц находит выражение энергии точечных зарядов и показывает физическое значение функции, названной Гауссом потенциалом. Далее он вычисляет энергию системы заряженных проводников и показывает, что при разряде лейденских банок выделяется теплота, эквивалентная запасенной электрической энергии. Он показал при этом, что разряд является колебательным процессом и электрические колебания «делаются все меньше и меньше, пока, наконец, вся живая сила не будет уничтожена суммой сопротивлений». Затем Гельмгольц рассматривает гальванизм. Он указывает, что количество теплоты, выделяемое в металлическом проводнике с сопротивлением w в течение времени t, «равно, по Ленцу», и показывает, что это соответствует работе электрических сил. Гельмгольц разбирает энергетические процессы в гальванических источниках, в термоэлектрических явлениях, положив начало будущей термодинамической теории этих явлений Рассматривая магнетизм и электромагнетизм, Гельмгольц, в частности, дает свой известный вы вод выражения электродвижущей силы индукции, исходя из исследований Неймана и опираясь на закон Ленца. В своем сочинении Гельмгольц в отличие от Майера уделяет главное внимание физике и лишь очень бегло и сжато говорит о биологических явлениях. Тем не менее именно это сочинение открыло Гельмгольцу дорогу к кафедре физиологии и общей патологии медицинского факультета Кенигсбергского университета, где он в 1849 г. получил должность экстраординарного профессора. Эту должность Гельмгольц занимал до 1855 г., когда он перешел профессором анатомии и физиологии в Бонн. Б 1858 г. Гельмгольц становится профессором физиологии в Гейдельберге. В Гейдельберге Гельмгольц много и успешно занимался физиологией зрения. Эти исследования существенно обогатили область знания и практическую медицину. Итогом этих исследований явилась знаменитая «физиологическая оптика» Гельмгольца, первый выпуск которой вышел в 1856, второй — в 1860, третий — в 1867 г. Здесь же, в Гейдельберге, Гельмгольц проводил свои классические исследования по скорости распространения нервного возбуждения, по акустике. Его книга «Учение о звуковых ощущениях как физиологическая основа акустики» вышла в 1863 г. Наконец, в Гейдельберге вышли его классические работы по гидродинамике и основаниям геометрии. С марта 1871 г. Гельмгольц становится профессором Берлинского университета. Он создает физический институт, в который приезжали работать физики всего мира, принимает активное участие в организации Государственного физико-технического института — центра немецкой метрологии, первым президентом которого он становится. Умер Гельмгольц 8 сентября 1894 г. Разными путями шли открыватели закона сохранения и превращения энергии к его установлению. Майер, начав с медицинского наблюдения, сразу рассматривал его как глубокий всеобъемлющий закон и раскрывал цепь энергетических превращений от космоса до живого организма. Джоуль упорно и настойчиво измерял количественное соотношение теплоты и механической работы. Гельмгольц связал закон с исследованиями великих механиков XVIII в. Идя разными путями, они наряду со многими другими современниками настойчиво боролись за утверждение и признание закона вопреки противодействию цеховых ученых. Борьба была нелегкой и порой принимала трагический характер, но она окончилась полной победой. Наука получила в свое распоряжение великий закон сохранения и превращения энергии. Создание лабораторий Вторая половина XIX в. отмечается важными изменениями в организации подготовки физиков. В это время сначала в Европе, а затем в Америке создаются физические лаборатории. В некоторых из лабораторий зарождаются научные школы. В прошлом физик работал в одиночку. Приборы обычно покупались на собственные деньги или изготовлялись самими учеными. Нередко лабораториями служили частные комнаты Опыты по разложению белого света Ньютон проделал в своей квартире в Кембридже. Вспомним, что физическим прибором ему служила призма, купленная на собственные деньги. Через сто пятьдесят лет в той же обстановке Стоке проводил свои оптические исследования. Рихман и Ломоносов исследовали атмосферное электричество с «громовыми машинами», построенными каждым у себя на квартире. Франклин для исследования атмосферного электричества соорудил в своем доме в филадель-фии железный изолированный стержень. Джоуль свои эксперименты по определению механического эквивалента теплоты проводил дома в Манчестере. «Лабораторией Гей-Люссаку служило сырое полуподвальное помещение.Ученый, предохраняясь от сырости..., работал в деревянных башмаках». Френель в селе Матье близ Канна, в доме матери, проводил исследования по дифракции с примитивными приборами и приспособлениями, сделанными для него сельским слесарем. Фуко экспериментировал в своем доме. Лаборатория Royal Institution, где работали Дэви, фарадей и Тиндаль (1820—1893), открытая в 1803 г., как вспоминал Тиндаль, «плохо вентилировалась, плохо освещалась и была совершенно неподходящей для ежедневной многочасовой работы. Это, вероятно, наихудшая лаборатория во всем Лондоне». И эта лаборатория оставалась почти 70 лет в первоначальном состоянии. Конечно, она не служила целям обучения экспериментальному искусству, вся аппаратура, которая в ней была, служила в основном целям исследователей-одиночек или только лекционным целям. Здесь фарадей в своих исследованиях обходился мотками проволок, кусками железа, магнитными стрелками. Причем все эти люди, подобно Максвеллу и Кельвину, не проходили какого-либо курса обучения практической физике. Его просто тогда не было. В тогдашних университетах преподавание велось в классическом духе, основное внимание уделялось гуманитарным и математическим наукам, физике отводилось мало места.Так, в Кембриджском университете до 70-х годов из физики читались только оптика, гидростатика, механика. Трипос (экзамен для соискателей ученой степени) включал в себя в основном математические науки. В Германии до 40-х годов XIX столетия делалось существенное различие между учреждением для учебных целей и учреждением для научных исследований. Так, в протоколе Тайного Совета от 22 июля 1807 г. правительство разъясняет университету, что «изобретение в научной области является делом ученых, а не делом учителей, которые как таковые, подобно судье, должны принимать во внимание не составление законов, а выполнение данных законов». Такое же положение было и в университетах России, где считалось, что главная задача преподавателя — читать лекции, а занятия наукой —вещь второстепенная и необязательная. В американских колледжах и университетах обучение сводилось к чтению лекций и штудированию учебников, а «лекционные демонстрации скорее создавали внешний блестящий эффект и не служили своим истинным целям». В середине XIX столетия бурное развитие промышленности, машиностроения, химической промышленности, металлургии и горного дела, электротехники, теплотехники, строительство железных дорог, возникновение пароходства и воздухоплавания — все это стимулировало развитие науки, новых форм ее организации. Все более усиливалась связь науки и техники. Так, в решении задач, связанных с прокладкой трансатлантического кабеля между Европой и Америкой, принимал участие Вильям Томсон. Эта грандиозная техническая задача была успешно решена в 1866 г. благодаря союзу ученых и техников. Вспомним лабораторию Реньо на Севрском . фарфоровом заводе, созданную для исследований, которые были нажны для развития тепловых машин. В свою очередь техника дает науке все более мощные средства познания тайн природы. Совершенствование воздушных насосов позволило получить такой вакуум, что сделало возможным опыты и измерения, которые раньше были неосуществимы. «При таких давлениях мы можем изучать свойства отдельных молекул, — писал Дж. Дж. Томсон, — в то время как при более высоких мы можем только изучать их поведение в плотной толпе...» К этому времени значительно усложнилась физическая теория и эксперимент. Новые задачи, стоящие перед физической наукой, требовали для своего решения все большего числа физиков. Итак, в новых условиях необходимо было предусмотреть новые формы и темпы подготовки ученых. Старые образовательные учреждения были не в состоянии выполнить эту роль, перестройка их была необходима. И с сороковых годов XIX столетия начинают создаваться физическиелабо-ратории как новая форма организации коллективных методов исследования в физике. Лидерство в перевооружении физики заняла Германия, которая с 40-х годов переживала национальный и культурный подъем. Из феодальной страны Германия превращалась в капиталистическую империю, разгромившую Австрию и францию, сплотившую под эгидой Пруссии княжества раздробленной со времен реформации страны. Первая физическая лаборатория была создана в Геттингенском университете В. Вебером, который был приглашен туда в 1831 г. Гауссом. Вебер привлек студентов к подготовке лекционных опытов. Наиболее способным он предложил небольшие физические исследования. Позднее он ввел практические занятия для желающих. В 1837 г. Вебер был вынужден покинуть университет, протестуя в числе других профессоров университета против нарушения королем Эрнстом-Августом Ганноверской конституции. Руководство физическим отделом университета было передано Листингу. При нем научная и педагогическая деятельность заметно упала, но зато произошло некоторое увеличение площади, занятой под физический отдел. В 1849 г. Вебер возвратился в Гет-тинген, где вновь начался подъем научно-педагогической деятельности физического отдела университета. При Вебере происходит деление физического отдела на кафедры экспериментальной и теоретической физики Первой заведовал Вебер, второй —Листинг. Цели и задачи обеих кафедр были одинаковы, разница заключалась лишь в том, что Вебер читал экспериментальную физику, а Листинг—теоретическую. Помещения физического отдела университета были тогда очень малы. В лаборатории Вебер проводил работы в области геомагнетизма и гальванизма, электрических колебаний, совместно с Рудольфом Кольраушем (1809— 1858) он определил отношение электростатических и магнитных единиц. В лаборатории Вебера работали ученые из различных стран мира. Здесь работал наш замечательный физик А. Г. Столетов, английский ученый Артур Шустер (1851-1934) и др. Новый поворот в развитии физического отдела Геттингена был связан с приходом в него в качестве экстраординарного профессора физики сына Рудольфа Кольрауша — Фридриха Коль-рауша (1840-1910), ученика Вебера. Ему было поручено устройство физического практикума и руководство им. Свой богатый опыт педагогической деятельности в Геттингене Кольрауш обобщил в книге, ставшей всемирно известным первым пособием по практической физике. Итак, в Геттингенском университете Вебером была создана одна из первых физических лабораторий, в которой в основном проводились исследования в области электромагнетизма. Вскоре маленькая лаборатория была расширена и превратилась в физический институт. Здесь появился первый учебник по практической физике, с выходом которого практические занятия по физике начали распространяться по всем университетам и политехническим институтам мира. Впоследствии физический институт так разросся, что дал начало пяти новым подотделам института, в которых работали многие известные ученые, такие, как Нернст (1864—1941), Вихерт (1861-1928), Клейн (1849-1925), Рикке (1845—1915) и др., было подготовлено много ученых не только из Германии, но и из других стран мира. В 40-х годах в Берлине университетский профессор Генрих Густав Магнус оборудовал несколько комнат в своем доме под физическую лабораторию и принимал студентов для работы в ней. Университет оплачивал расходы по содержанию лаборатории. Лаборатория Магнуса была устроена со всеми возможными в частном доме удобствами. У Магнуса учились молодые исследователи не только из Германии, но и из Америки, Англии, России: Видеман (1826-1899), Варбург (1846-1931), Тиндаль, Гиббс, А.Г.Столетов, М. П.Авенариус и др. Тематика исследований у Магнуса была самой разнообразной. Гельмголыд, например, изучал процессы гниения и брожения; Кундт исследовал распространение звука в твердых телах. В 1843 г. Магнус положил начало физическим коллоквиумам. Ошибочно было бы считать, что лаборатория Магнуса была единственной частной физической лабораторией при Берлинском университете. Почти каждый профессор физики Берлинского университета имел в своей квартире лабораторию, где студенты выполняли практические работы. Так, профессор Эрман (1806—1877) имел в своей квартире лабораторию, где студенты могли производить магнитные наблюдения. Лекционный курс профессора Квинке (1834—1924) дополнялся практическими занятиями, проводившимися у него на дому. Но лаборатория Магнуса имела наибольшую известность как в Германии, так и за рубежом. В лабораторию Магнуса приходило все больше и больше учеников. Многим приходилась отказывать из-за недостатка помещений. В 1863 г. лабораторию переносят в здание университета. Она становится не частной, а государственной лабораторией, достигнув своего расцвета при знаменитом преемнике Магнуса— Гельмгольце. В отличие от Магнуса ф. Нейман в созданной им в Кенигсберге лаборатории умело сочетал экспериментальную и теоретическую физику. При создании лаборатории Нейман столкнулся с немалыми трудностями. О н обращался к официальным властям с просьбой финансировать физическую лабораторию в дополнение к его семинару по математической физике. Официальные власти отказали, и в 40-х годах Нейман организовал лабораторию на собственные средства. Учеников у Неймана было меньше, чем у Магнуса. Они, прежде чем перейти к экспериментам, проходили большую теоретическую подготовку по механике и математической физике. Среди великих его учеников был Густав Роберт Кирхгоф. Впоследствии Кирхгоф сам становится руководителем физической лаборатории в Гейдельберге, сменив на этом посту Ф. Г. Жолли (1809-1884). Жолли создал лабораторию в двух небольших частных комнатах в 1846 г. В лаборатории Жолли Кирхгоф и Бунзен провели исследования, приведшие к открытию спектрального анализа. В лаборатории Кирхгофа был создан один из лучших курсов экспериментальной физики, привлекавший учеников из различных стран мира. Этот курс расширил преемник Кирхгофа Квинке. В новом Страсбургском университете, основанном в 1872 г., уже заранее было предусмотрено строительство физического института. Его директор Кундт создал очень удобный для обучения и исследования институт, который долго служил прототипом для многих институтов, аудиторий, лабораторий различных стран. Здесь под руководством Кундта была подготовлена плеяда тонких экспериментаторов, таких, как рентген, Лебедев, Пашен, Рубенс, Винер, Голицын и др. Вслед за Страсбургским институтом в 1875 г. создаются физические институты в Лейпциге, Мюнхене, Бонне, Бреслау, Фрайбурге и других городах. Вскоре каждый немецкий университет обзавелся хорошо оборудованной физической лабораторией. Создание лабораторий повлекло за собой развитие старых и основание новых мастерских физических приборов. В 70-х годах XIX в. Великобритания, ведущая капиталистическая держава мира, начала терять былое могущество и отставать от своих более молодых соперниц — Германии и США. Это отставание сказалось и на темпах строительства лабораторий. Среди пионеров экспериментального обучения в Великобритании были профессораВ.Томсон (Кельвин), Клифтон, фостер, Адаме, Б. Стюарт. В 1846 г. 22-летний Томсон занял пост профессора натурфилософии в университете Глазго. Для проведения серии экспериментов по электродинамике он пригласил себе в помощь нескольких студентов. До 1870 г. лабораторией Томсону и его студентам служили старые лекционные комнаты и заброшенный винный подвал, а после переезда университета в новое здание в 1870 г. Томсону были предоставлены просторные помещения для экспериментальной работы. Мы еще вернемся к лаборатории В.Томсона, Гельмгольца и других. А пока продолжим рассказ о создании физических лабораторий. В Оксфорде в 1867 г. в небольшой комнате, выделенной университетом, профессор Клифтон начал обучение экспериментальной физике. В 1872 г. вступила в строй спланированная Клифтоном Кларендонская лаборатория. Она послужила прототипом для многих лабораторий мира. Д. К. Максвелл посе-тил ее, когда планировал Кавендишскую лабораторию в Кембридже. В октябре 1867 г. профессор К. фостер в университетском колледже в Лондоне в небольшой комнате также начал занятия по экспериментальной физике. Он писал: «Я убежден, что не может быть нормального обучения физике отдельно от практической работы, студенты должны иметь личное знакомство с явлением до того, как они смогут с пользой рассуждать о нем». Мысль фостера об обязательном практическом обучении для всех студентов была претворена В. Адамсом в Кинг-колледже. В 1871 г. в Оуэн-колледже (Манчестер) занятия в физической лаборатории начали проводиться под руководством Бальфура Стюарта. У него учились искусству экспериментировать известный английский физик А. Шустер и знаменитый Дж. Дж. Томсон, открывший электрон. Вначале экспериментальная работа проводилась в нескольких маленьких комнатах с немногочисленной аппаратурой, а с 1898 г. было выстррено новое здание лаборатории, оборудованное лучшей аппаратурой того времени. В Кембридже обучение экспериментальному искусству начало проводиться с 1874 г. в здании знаменитой Кавендишской лаборатории. Она была выстроена на частные средства и сыграла огромную роль в развитии физики. Достаточно сказать, что ее руководителями были в разное время Максвелл, Рэлей, Дж. Дж. Томсон, Резерфорд. Из всех английских лабораторий систематическое обучение было только в Кинг-колледже. С гораздо большим размахом систематическое лабораторное обучение было введено в 1869 г. в Массачусетском институте технологии в Бостоне профессором Э. С. Пикерингом. Основателем Массачусетского института технологии был В. Б. Роджерс. Он признавал важность новых образовательных учреждений в условиях экономического роста страны, освоения-Запада, роста индустрии, транспорта, сельского хозяйства. Роджерс придавал большое значение обучению в лабораториях. При организации лабораторных занятий главной трудностью, с которой столкнулся Пикеринг, было «дать возможность двадцати или тридцати студентам одновременно выполнять эксперименты без дублирования аппаратуры и предотвратить опасность повреждения тонкой аппаратуры». Эти трудности были успешно преодолены. В США обучение практической физике в технических учебных заведениях было поставлено лучше, чем в колледжах и университетах. Так, до 1871 г. Гарвард-колледж не имел приборов для технических измерений. «Большинство лабораторий в этой стране были выстроены и оборудованы за последние пятнадцать лет» (имеется в виду примерно 1895—1910 гг.— С. К.), — писал американский историк науки ф. Кэджори. франко-прусская война подорвала экономическое могущество франции, уступавшей по объему промышленного производства только Англии. Это не могло не сказаться и на развитии науки. Мы уже рассказывали об одной из первых лабораторий во франции — Севрской лаборатории Реньо для термодинамических исследований. Но Реньо во франции был в особых условиях. Он занимался вопросами термодинамики, так как промышленность остро нуждалась в более совершенных тепловых машинах. Этим и объясняется то, что ему были созданы хорошие условия для исследовательской работы. Вообще же французские ученые выражали неудовольствие отсутствием лабораторий и средств для проведения исследований. 31 июля 1868 г. французским Министерством образования было выпущено два декрета, утверждающих необходимость проведения практических занятий и создания лабораторий для студентов и специальных лабораторий для научных исследований. В этом же году профессор Жамен (1818—1886) открыл лабораторию в Сорбонне. До самой смерти он был главой этой лаборатории. Профессор Адаме, посетивший францию в 1868 г., нашел, «что единственной лабораторией, где велось систематическое обучение практической физике, была лаборатория Жамена в Сорбонне, где студенты уже занимались определением физических констант и где аппаратура была только та, которую использовал профессор в собственных исследованиях». Под руководством Жамена в лаборатории работало несколько русских и румынских физиков. В 1894 г. она была передана новому «факультету науки» и реконструирована. Ее директором был назначен Липпман (1845—1921). Лаборатория стала знаменитой благодаря его исследованиям, приведшим к открытию цветной фотографии. И все же, несмотря на то что франция вслед за Германией и Англией начала обучение экспериментальной физике, она в значительной мере отставала в этом деле от передовых стран. Лабораторий во франции было мало, средства, отпускавшиеся на нужды экспериментальных исследований, были очень скудны, действующие лаборатории были так переполнены, что там не оставалось места для исследовательской работы, физическую науку во франции развивали лишь гениальные исследователи-одиночки. Так, Де Метц, посетивший многие лаборатории Европы и работавший в Сорбонне в 1886 г., писал: «...между инструментами и приспособлениями физических лабораторий Сорбонны я ничего не видел нового, в особенности интересного, если не считать абсолютного электрометра Пеллата... Такое явление обусловливается скудностью отпускаемых сумм... Общее впечатление, произведенное на меня физическими лабораториями Сорбонны, было не в пользу последней. Ничего крупного, ничего выдающегося!.. В современном своем состоянии физические лаборатории при Сорбонне не могут быть поставлены наряду с лучшими учреждениями этого рода в Европе». Мария Склодовская-Кюри, учившаяся в Сорбонне с 1891 г., прошла курс практического обучения по физике, но первое свое исследование по определению магнитных свойств металлов она не смогла провести в перегруженных лабораториях Сорбонны. С.И.Вавилов писал о положении науки во франции в период французской революции: «Музей и Политехническая школа больше не подготовляют ученых будущего, как они это делали раньше, научное исследование в загоне и находится в вопиющих материальных условиях. За 30 лет Германия покрылась сетью богатых лабораторий, и каждый день появляются новые. А франция? франция еще не взялась за дело. У нее отсутствует предусмотрительность. Она покоится в тени своих старых трофеев». Отмена крепостного права разорвала путы, сковывающие развитие капитализма в России. После падения крепостного права темпы развития промышленности в России начинают возрастать. И все Же экономическая отсталость России сказалась и на отставании ее в деле создания физических лабораторий. Для русских физиков местом деятельности служили физические кабинеты. Здесь хранилась аппаратура, которую применяли на лекционных демонстрациях, и проводились единичные экспериментальные исследования. В России были ученые, понимавшие важность практического обучения. Так, В.В.Петров в 1795 г. организовал первый физический кабинет при Медико-хирургической академии. Его желание организовать научно-исследовательскую работу для студентов, превратить кабинет в лабораторию не осуществилось. Э.Х. Ленц в 40-х годах XIX в. пытался преобразовать физический кабинет Академии наук в физическую лабораторию, привлекая молодых исследователей для работы в нем. Но учеников у Ленца было немного, кроме того, после смерти Ленца исследовательская деятельность в физическом кабинете Академии наук затухла. Но дело, начатое Ленцем, не пропало бесследно. Его ученики, продолжая традиции своего учителя, организовывали физические лаборатории в различных высших учебных заведениях. Первая лаборатория в России создается при Петербургском университете Ф. Ф. Петрушевским (1828-1904) в 1865 г. В первые пять лет число работающих в ней не превышало десяти человек; в 1870 их было 18, в 1875 - уже 76, а в 1878 — 115. Надо отметить, что введение Петрушевским лабораторного практикума в университете шло в одно время с введением подобного практикума за границей. Лаборатория испытывала большие трудности из-за недостатка помещения, приборов и средств, отпускаемых на ее нужды. Петрушевский и его ученик И.И.Боргман (1849-1914) боролись за создание физической лаборатории, отвечающей современным требованиям. Благодаря их хлопотам средства на постройку нового здания физического института были отпущены, и 9 сентября 1901 г. физический институт был открыт. В новом помещении появилась возможность значительно расширить физический практикум и также проводить многочисленные физические исследования. В лаборатории Петрушевского было подготовлено много известных русских ученых и педагогов. Учениками Петрушевского были А.С.Попов, И.И. Боргман, Н. Г. Егоров (1849-1919), В. К. Лебединский (1868—1937), Н.П.Слугинов (1854—1897) и ряд других замечательных русских и советских физиков. Ученики лаборатории распространили практические занятия по физике в большей части России. В 1867 г. Д.А. Лачинов (1842-1902) создает физическую лабораторию в Петербургском земледельческом институте. В 70-х годах М.П. Авенариус организовывает физическую лабораторию в Киевском университете, а А. Г. Столетов — в Московском университете. В лаборатории Московского университета был выполнен ряд замечательных ра бот, сыгравших большую роль в развитии физики, и подготовлено много способных учеников, занявших впоследствии посты заведующих кафедрами физики многих университетов России (Р.А.Колли, Н.Н.Шиллер, П.А.Зилов, Н.П.Кастерин, Д. А. Гольдгаммер, В. А Михельсон). Столетов провел в своей лаборатории актиноэлектрические исследования, принесшие ему мировую славу. Он привлек в лабораторию П. Н.Лебедева, впоследствии создавшего замечательную школу русских физиков, прославившего родную науку исследованиями светового давления. После смерти Столетова заведующим физическим кабинетом был избран Н.А.Умов. Понимая важность создания физического института — не воплощенной при жизни мечты Столетова, Умов прилагает много энергии для претворения ее в жизнь. Над созданием проекта института работала комиссия во главе с Умовым, в которую входили П.Н.Лебедев и А.П.Соколов. Институт был выстроен в 1903 г. Именно в стенах этого института достигла своего расцвета школа физики П. Н.Лебедева. Итак, одновременно с лабораториями за границей в России появились физические лаборатории в Петербургском и Московском университетах. Но экономическая отсталость России, реакционность правительства мешали развитию лабораторий. Мизерность отпускаемых на нужды лабораторий средств, недооценка важности научных исследований вынуждали руководителей физических лабораторий вести постоянную борьбу за каждую комнату для экспериментальной работы, за каждый прибор, за каждого ученика, что отнимало много времени и сил. И все же в таких условиях передовые русские физики Ф. Ф. Петрушевский, Д.А.Лачинов, М.П.Авенариус, Н.А.УМОВ, А.Г.Столетов, П.Н.Лебедев обогатили не только русскую науку, но и внесли фундаментальный вклад в развитие физики. Второе начало термодинамики Прогресс теплотехники не только стимулировал открытие закона сохранения и превращения энергии, но и двинул вперед теоретическое изучение тепловых явлений. Уточнялись основные понятия, создавалась аксиоматика теории теплоты, разрабатывались математические методы. Ведущую роль в основании теории тепловых явлений сыграли Р. Клаузиус, В. Томсон и другие ученые. Рудольф Клаузиус родился 2 января 1822 г. в г. Кёслине. По окончании университетского курса в Берлине он был преподавателем в Артиллерийской школе. С 1855 г. он стал профессором в Высшей политехнической школе в Цюрихе, а затем в Цюрихском университете. С 1869 г. он переехал в Бонн, где и умер 24 августа 1888 г. Статьи Клаузиуса по механической теории теплоты были изданы в 1867 г. В 1879-1891 гг. вышло второе, перера_-ботанное и дополненное, издание этой книги под заглавием «Die mechanische Warmetheorie» в трех томах. Второй том книги был посвящен механической теории электричества, третий — кинетической теории газов. Первая статья Клаузиуса «О движущей силе теплоты» появилась в 1850 г. В ней он разбирает работу Карно (вслед за В. Томсоном) и, отказываясь от его концепции неуничтожаемости теплоты, считает, что надо сохранить основную часть его положения в виде нового принципа — второго начала, который Клаузиус формулирует следующим образом: «Теплота не может переходить сама собой от более холодного тела к более теплому». Клаузиус неоднократно в своих статьях разъяснял смысл выражения «сама собой». «Появляющиеся слова «сама собой», — писал он в «Статьях по механической теории тепла»,— требуют, чтобы быть вполне понятными, еще объяснения, которое дано мною в различных местах моих работ». Теплота в ряде процессов может перейти от холодного тела к теплому, но «тогда одновременно с этим переходом от более холодного к более теплому телу должен иметь место и противоположный переход теплоты от более теплого к более холодному, либо должно произойти какое-либо другое изменение, обладающее той особенностью, что оно не может быть обращено без того, чтобы не вызвать с своей стороны, посредственно или непосредственно, такой противоположный переход теплоты ». Клаузиус указывает, что такой противоположный процесс должен рассматриваться «как компенсация перехода теплоты от более холодного тела к более теплому», и дает новую формулировку принципа: «Переход теплоты от более холодного тела к более теплому не может иметь место без компенсации». «Это предположение, выставленное мною в качестве принципа, — пишет Клаузиус в своем обобщающем труде, — встретило много возражений, и мне пришлось его неоднократно защищать». В борьбе за утверждение нового принципа большую роль сыграл английский физик Вильям Томсон. Вильям Томсон родился 26 июня 1824 г. в Белфасте в семье преподавателя математики. Когда Вильяму было восемь лет, семья переехала в Глазго, который стал впоследствии местом жизни и труда знаменитого физика. Одаренный мальчикуже в десятилетнем возрасте стал студентом Глазговского университета. Вскоре юный студент опубликовал свою первую работу по теории теплопроводности. Двадцати двух лет Томсон становится профессором в Глазго и занимает кафедру до 1899 г., в течение пятидесяти трех лет. Заняв пост профессора натурфилософии университета и ознакомившись с положением дел на кафедре, Томсон нашел его неудовлетворительным. Старомодная аппаратура, большая часть которой столетней давности, остальная — пятидесятилетней. Такими приборами пользовались для лекционной демонстрации. «...Здесь абсолютно не было обеспечено какого-либо рода экспериментальных исследований и совсем не было идей даже для какой-нибудь студенческой практической работы». Вскоре Томсон в Глазго предпринял серию экспериментов по электродинамическим свойствам материи. В помощь себе он пригласил нескольких студентов. Приглашенные добровольцы с энтузиазмом принялись за работу. Другие студенты, узнав, что их товарищи предприняли экспериментальные исcледования, захотели участвовать в этом. «Я не мог дать им всем работу, в особенности в исследовании, с которого я начал, — «Электрическая конвекция тепла», — вспоминает В.Томсон, — но я делал все, что в моих силах, чтобы найти им работу по смежным темам — электродинамические свойства металлов, модуль упругости металлов, ат мосферное электричество». Вначале администрация университета предоставила исследователям старые лекционные комнаты и препараторские, примыкающие к ним. Но для добровольцев, число которых на первых порах колебалось от пяти до двадцати, этого было явно мало, и пришлось отвести под лабораторию еще и старый заброшенный винный подвал и часть старого профессорского дома, другая часть которого служила лекционными аудиториями. Через несколько лет в университете Глазго был упразднен один экзамен, и комната, предназначенная для него, перешла в распоряжение В.Том сона Вот такие комнаты служили В. Томсону физическими лабораториями до 1870 г. Поражает энтузиазм, с которым работали студенты у В.Томсона. Как он вспоминал, некоторые студенты так усердно работали, что ему приходилось вмешиваться, беспокоясь об их здоровье. Обучение в лаборатории было совершенно новым делом. Студенты, тогда посещавшие кафедру натурфилософии, готовились стать юристами, медиками, но в основном духовными лицами. Натурфилософия для них была одним из предметов для получения степени, но это был теоретический экзамен, и никаких практических знаний он не требовал. «Студенты, — замечает В. Томсон, — вначале приходили в лабораторию в надежде приятно провести время... и они не были разочарованы». Вскоре лаборатория стала пополняться приборами, выписанными не только из-за границы, но и сделанными университетской фирмой «Джеймс Уайт». Дж. Уайт, основатель фирмы, начал дело в Глазго в 1849 г. Все приборы, изобретенные самим В.Томсоном, изготовлялись этой фирмой. В 1870 г. университет переехал в новое великолепное здание, в котором были предусмотрены просторные помещения для исследований. Кафедра и дом Томсона первыми в Британии освещались электричеством. Между университетом и мастерскими Уайта действовала первая в стране телефонная линия. Мастерские разрослись в фабрику в несколько этажей, по существу ставшую филиалом кельвинской лаборатории. В.Томсон часто заходил в мастерские и обсуждал с Уайтом конструкцию будущего прибора. Вообще Томсон был очень привязан к своему университету в Глазго. Ему предлагали более высокие посты, такие, как главы Кавендишской лаборатории, ректора Эдинбургского университета, но он отказывался. В.Томсон старался не терять связь с лабораторией, где бы он ни был, «почтой и телеграфом он постоянно был связан с ней, получая результаты исследований и продолжая руководить лабораторией и на расстоянии». В.Томсон обладал большим педагогическим талантом. Он прекрасно сочетал теоретическое и практическое обучение. Пять дней в неделю он читал по две лекции: одну — по физике, другую—по математической физике. Лекции по физике сопровождались демонстрациями. К проведению демонстраций Томсон привлекал студентов. Такие лекции и обилие демонстраций, сопровождавших их, стимулировали интерес слушателей. В.Томсон был сторонником экспериментального обучения для всех студентов университета. Три четверти его студентов становились теологами. Как говорил Томсон, «они определенно учились терпению и настойчивости, если не большой науке». Из лаборатории выходили и такие, которые, став духовными лицами, не прекратили занятия физической наукой. Так, Джон Керр (1824-1907) был студентом кафедры натурфилософии, когда туда двадцатидвухлетним профессором пришел Томсон. Керр был одним из добровольцев Томсона, помогая ему в сооружении физической лаборатории, и стал его другом на всю жизнь. Впоследствии Керр стал священником одной из церквей Шотландии, но интерес к науке не потерял до конца жизни и сменил карьеру священника на карьеру ученого-педагога. Имя его вошло в историю науки благодаря открытию им в 1875 г. электрооптического эффекта. Лабораторией Томсона было сделано много оригинальных научных исследований, и она сыграла большую роль в физической науке. Соавтор Томсона по «Трактату по натуральной философии» П. Г. Тэт, профессор Эдинбургского университета, оборудовавший в 1868 г. схожую лабораторию, писал: «В Глазго, при обстоятельствах более неблагоприятных, чем те, которые я представляю, студенты сэра В. Томсона уже несколько лет делают превосходные работы и снабжаются своим выдающимся учителем экспериментальной основой для более чем одного замечательного исследования». В 1892 г. Томсону за его большие научные заслуги был присвоен титул лорда Кельвина (по имени речки Кельвин, протекающей вблизи университета в г.Глазго). Томсон написал огромное количество работ по экспериментальной и теоретической физике. Пятидесятилетний юбилей его научной деятельности в 1896 г. отмечали физики всего мира. В чествовании Томсона участвовали представители разных стран, в том числе русский физик Н А. Умов Томсон умер 17 декабря 1907 г. Как мы уже говорили, Томсону наряду с Клаузиусом принадлежит заслуга в обосновании второго закона термодинамики. Мы видели, что еще в 1848 г. он сомневался в справедливости закона сохранения энергии, так как в тепловых машинах теплота не полностью переходит в работу (это было показано еще Карно). Работа Карно подсказала Томсону важную мысль о введении температурной шкалы, не зависящей от выбора термометрического тела, — абсолютной шкалы температур. Эта «шкала Кельвина» основана на процессе Карно, который, как известно, носит абсолютный характер, не зависящий от выбора рабочего вещества и характера процессов, применяемых в цикле. Введение «шкалы Кельвина» представляет первый существенный вклад Томсона в термодинамику (1848). 17 марта, 21 апреля и 15 декабря 1851 г. Ломсон сделал в Эдинбургском Королевском обществе доклады, опубликованные в «Трудах» общества за 1851 г. и в «Philosophical Magazine» за 1852 г. под заглавием «О динамической теории теплоты». Эта работа представляет собой изложение новой точки зрения на теплоту, согласно которой «теплота представляет собой не вещество, а динамическую форму механического эффекта». Поэтому «должна существовать некоторая эквивалентность между механической работой и теплотой». Томсон указывает, что этот принцип, «по-видимому, впервые... был открыто провозглашен в работе Майера «Замечания о силах неживой природы». Далее он упоминает работу Джоуля, исследовавшего численное соотношение, «связывающее теплоту и механическую силу». Томсон утверждает, что вся теория движущей силы теплоты основана на двух положениях, из которых первое восходит к Джоулю и формулируется следующим образом: «Во всех случаях, когда равные количества механической работы получаются каким бы то ни было способом исключительно за счет теплоты или бывают израсходованы исключительно на получение тепловых действий, всегда теряются или приобретаются равные количества теплоты». Второе положение Томсон формулирует так: «Если какая-либо машина устроена таким образом, что при работе ее в противоположном направлении все механические и физические процессы в любой части ее движения превращаются в противоположные, то она производит ровно столько механической работы, сколько могла бы произвести за счет заданного количества тепла любая термодинамическая машина с теми же самыми температурными источниками тепла и холодильника». Эта положение Томсон возводит к Карно и Клаузиусу и обосновывает следующей аксиомой: «Невозможно при помощи неодушевленного материального деятеля получить от какой-либо массы вещества механическую работу путем охлаждения ее ниже температуры самого холодного из окружающих предметов». К этой формулировке, которую называют томсоновской формулировкой второго начала, Томсон делает следующее примечание: «Если бы мы не признали эту аксиому действительной при всех температурах, нам пришлось бы допустить, что можно ввести в действие автоматическую машину и получать путем охлаждения моря или земли механическую работу в любом количестве, вплоть до исчерпания всей теплоты суши и моря или в конце концов всего материального мира». Описанную в этом примечании «автоматическую машину» стали называть perpetuum mobile 2-го рода и формулировку Томсона кратко выражать как принцип невозможности perpetuum mobile 2-го рода. В 1852 г., развивая положения статьи 1851 г., Томсон приходит к следующим выводам: «1. В материальном мире существует в настоящее время общая тенденция к расточению механической энергии. 2. Восстановление механической энергии в ее прежнем количестве без рассеяния ее в более чем эквивалентном количестве не может быть осуществлено при помощи каких бы то ни было процессов с неодушевленными предметами и, вероятно, также никогда не осуществляется при помощи организованной материи, как наделенной растительной жизнью, так и подчиненной воле одушевленного существа. 3. В прошлом, отстоящем на конечный промежуток времени от настоящего момента, Земля находилась и спустя конечный промежуток времени снова очутится в состоянии, непригодном для обитания человека; если только в прошлом не были проведены и в будущем не будут предприняты такие меры, которые являются неосуществимыми при наличии законов, ныне регулирующих известные процессы, протекающие ныне в материальном мире». В этой небольшой заметке, носящей выразительное название «О проявляющейся в природе общей тенденции к рассеянию механической энергии», Томсон формулирует знаменитую концепцию «тепловой смерти». Заметим, что в этой заметке Томсон заменил термин «движущая сила» современным термином «энергия». В 1853 г. Уильям Джон Макуорн Ранкин (1820-1872), инженер и профессор технической механики в Глазго, в статье «Об общем законе превращения энергии» вводит термин «энергия» и формулирует закон сохранения энергии в следующем виде: «Сумма всей энергии (потенциальной и кинетической) во Вселенной остается неизменной». С этого времени термин «энергия» и закон сохранения энергии входят во всеобщее употребление. Клаузиус, который много трудился над математическим оформлением основ термодинамики, в своей «Механической теории тепла» дает аналитическое выражение первого начала и вводит фундаментальное понятие внутренней энергии. Он определяет понятие механической работы, исследует условия интегрируемости дифференциального выражения работы: dW = Xdx + Ydy + Zdz В общем случае интеграл этого выражения зависит от пути интегрирования, но в случае, когда компоненты силы равны частным производным от силовой функции, интеграл не зависит от формы пути. Ранкин назвал функцию, отрицательным дифференциалом которой является работа, потенциальной энергией. «Это название, — пишет Клаузиус, — правда, превосходно выражает значение потенциальной энергии, но оно несколько длинно; поэтому я позволил себе предложить для этой величины название эргал». Однако это название в науке не удержалось, а термин, предложенный Ранкиным, сохранился. Первое начало термодинамики Клаузиус записывает в следующем виде: dQ = dH+dL, (I) где dQ - бесконечно малое количество теплоты, сообщенное телу, в результате чего изменяется количество теплоты, имеющееся в теле, на величину dH и тело, изменяя свое состояние, совершает работу dL. Работу dL Клаузиус разделяет на внутреннюю dl и внешнюю dW, так что dL = dl + dW. Уравнение (I) принимает следующий вид: dQ=dH + dJ+dW. (II) Внутренняя работа не зависит от формы пути, внешняя же может быть различна для различных переходов от одного состояния в другое. Клаузиус еще в первой работе 1850 г., имея в виду, что теплота, содержащаяся в теле, и внутренняя работа «играют совершенно одинаковую роль» и не могут быть разделены вследствие незнания нами внутренних сил, объединил Н и I в одну функцию U:U =H+I - и уравнение первого начала записал в виде: dQ=dW + dU. (III) Величину U Клаузиус, следуя Том-сону, назвал энергией тела. Мы теперь добавля ем прилагательное «внутренняя ». Это прилагательное употреблял в I860 г. Цейнер, но он неправильно говорил сначала о «внутренней теплоте», а затем о «внутренней работе» тела. Переходя ко второму началу термодинамики, Клаузиус рассматривает круговые обратимые процессы и указывает, что в простом круговом процессе типа цикла Карно совершаются два вида превращений: переход теплоты в работу и переход теплоты более высокой температуры в теплоту более низкой температуры. Второе начало «должно выражать отношение между этими двумя превращениями». Оба эти превращения — «явления одинаковой природы» и в обратимом процессе могут замещать друг друга. Клаузиус формулирует второе начало как принцип эквивалентности превращения следующим образом: «Если мы назовем эквивалентными два превращения, которые могут замещать друг друга, не требуя для этого никакого другого длительного измене- , ния, то возникновение из работы количества теплоты Q, имеющего температуру Т, обладает эквивалентом Q/?, а переход количества теплоты Q от температуры T1, к температуре Т2 имеет эквивалент Q (1/? 2-1/? 1), где ? есть некоторая функция температуры, независимая от рода процесса, с помощью которого совершаются превращения». Клаузиус показывает, что для обратимого кругового процесса сумма эквивалента равна нулю: Это, по Клаузиусу, является математическим выражением второго начала. «Стоящее под знаком интеграла выражение dQ/?, — пишет Клаузиус, —является дифференциалом некоторой связанной с состоянием тела величины, которая полностью определена, если известно состояние тела в рассматриваемый момент, хотя бы ничего не было известно о пути, по которому тело в рассматриваемое состояние пришло». Эту функцию Клаузиус ввел в 1865 г. и назвал энтропией (от греческого слова «тропэ»— превращение). Дифференциал энтропии dS=dQ/?. Для определения функции температуры ? Клаузиус рассматривает обратимый процесс с идеальным газом. В этом случае отношение отданной и поглощенной теплоты Q и Q, будет равно отношению температур: Q/Q1=T/T1. С другой стороны, Следовательно, <?/T = const. Постоянная не имеет существенного значения. Принимая ее равной 1, получим ?=T и dS=dQ/T. Для необратимых процессов и энергия, способная к превращениям, уменьшается, а энтропия соответственно растет. Клаузиус формулирует второе начало термодинамики в виде положения: «Энтропия Вселенной стремится к максимуму». Так через 20 лет после Томсона Клаузиус также пришел к концепции «тепловой смерти». Постулат Клаузиуса и концепция тепловой смерти вызвали большое количество возражений. Были придуманы многочисленные эксперименты, казалось, противоречащие принципу Карно -Клаузиуса. Очень тонкий мысленный эксперимент выдвинул Максвелл в своей «Теории тепла» (1870). Максвелл сначала считал, что второе начало имеет ограниченную область применения. «Это положение, — писал Максвелл о втором начале, — несомненно верно, пока мы имеем дело с телами большой массы и не имеем возможности ни различать отдельных молекул в этих массах, ни работать с ними. Но если представить себе существо со столь изощренными способностями, что оно было бы в состоянии следить за каждой отдельной молекулой во всех ее движениях, то подобное существо было бы способно сделать то, что для нас в настоящее время невозможно... Представим себе..., что какой-нибудь сосуд разделен на две части А и В перегородкой с маленьким отверстием в ней. Пусть существо, способное различать отдельные молекулы, попеременно то открывает, то закрывает отверстие, и притом таким образом, чтобы только быстро движущиеся могли переходить из Л в Б, и только медленнее движущиеся, наоборот, из В в А: Следовательно, такое существо без затраты работы повысит температуру в В и понизит ее в А — вопреки второму началу термодинамики ». «Демон Максвелла» работает, используя основные положения кинетической теории, согласно которым молекулы движутся с различными скоростями и температура пропорциональна средней кинетической энергии молекул. Действительно, молекулярная теория допускает существование процессов, происходящих в противоречии со вторым началом, а само второе начало является не абсолютным, а статистическим законом. «Демон Максвелла» -веха на пути к статистическому пониманию второго закона. Однако порожденная этим образом дискуссия привела к пониманию, что законы микро мира делают невозможным осущест вление эксперимента Максвелла. Критическое отношение многих ведущих физиков того времени к закону сохранения энергии, дискуссия вокруг второго начала термодинамики вытекали из самого существа этих фундаментальных открытий, затрагивающих глубокие вопросы мировоззрения. Эпоху установления начал термодинамики сравнивали — и не без основания — с эпохой Галилея. Наука и тогда, и в эту эпоху вплотную подходила к вопросам, издавна считавшимся прерогативой религии: начало и конец мироздания, сотворение и уничтожение материи и движения. Закон сохранения энергии укреплял позиции материалистов и подрывал устои религиозного мировоззрения. С другой стороны, концепция тепловой смерти казалась благоприятной для церковного учения о «конце мира», о «последних временах», предшествующих вторичному приходу Христа. Все это способствовало возникновению острой философской дискуссии вокруг новых открытий в физике. С конца XVIII в. началось резкое расхождение между философией и естествознанием. Естествознание занялось «малыми делами», измеряя константы, производя многочисленные опыты; философия, возглавляемая Кантом, фихте, Шеллингом и Гегелем, ушла в отвлеченные высоты духа. Герцен в своих «Письмах об изучении природы» ярко охарактеризовал это соотношение эмпирического естествознания и идеалистической философии. Мы приводили его высказывание о «взаимном недоверии» отвлеченной философии и эмпирического естествознания. Это «взаимное недоверие» проявилось и в судьбе работ Майера и Гельмгольца, от которых всячески пытались откреститься Поггендорф и другие представители эмпирического естествознания. Но в этой борьбе, в этом столкновении эмпирики и теории вырастало новое научное миропонимание. Основоположники научного социализма Маркс и Энгельс пристально следили за успехами нового естествознания и черпали оттуда идеи и доказательства для создания нового мировоззрения — диалектического материализма. Они увидели объективную диалектику природы в новых открытиях и нашли могучий синтез гегелевской диалектики и опытного естествознания. Мир предстал перед ними как вечно движущаяся материя, как непрерывное, не прекращающееся превращение форм движения, как арена борьбы противоположных начал. В великом открытии Майера, Джоуля и Гельмгольца они видели не только опору материалистического мировоззрения, но и поворотный пункт в развитии естествознания от механистического материализма Декарта и Ньютона к новому, диалектическому материализму. Энгельс подчеркивал в законе сохранения энергии не только его количественную сторону— сохранение энергии, но и качественное содержание: всякое превращение многообразных форм движения. «Если еще десять лет тому назад, — писал он в 1885 г., — новооткрытый великий основной закон движения понимался лишь как закон сохранения энергии, лишь как выражение того, что движение не может быть уничтожено и создано, т. е. понимался только с количественной стороны, то это узкое, отрицательное выражение все более вытесняется положительным выражением в виде закона превращения энергии, где впервые вступает в свои права качественное содержание процесса и стирается последнее воспоминание о внемировом творце».( Энгельс ф. Анти-Дюринг. - Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, с. 13. ) В этом законе превращения Энгельс видит опровержение концепции тепловой смерти. «Современное естествознание, — пишет он, — вынуждено было заимствовать у философии положение о неуничтожимости движения; без этого положения естествознание теперь не может уже существовать. Но движение материи — это не одно только грубое механическое движение, не одно только перемещение; это — теплота и свет, электрическое и магнитное напряжение, химическое соединение и разложение, жизнь и, наконец, сознание. Говорить, будто материя за все время своего бесконечного существования имела только один-единственный раз — и то на одно лишь мгновение по сравнению с вечностью ее существования — возможность дифференцировать свое движение и тем самым развернуть все богатство этого движения и что до этого и после этого она навеки ограничена одним простым перемещением, — говорить это значит утверждать, что материя смертна и движение преходяще. Неуничто-жимость движения надо понимать не только в количественном, но и в качеcтвенном смысле».( Энгельс Ф. Анти-Дюринг. - Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, с. 360. ) Энгельс понимает мир как вечный круговорот движущейся материи, в котором «материя при всех своих превращениях, остается вечно одной и той же» и «ни один из ее атрибутов никогда не может быть утрачен». Механическая теория тепла и атомистика Глубокие мысли Энгельса оставались неизвестными естествоиспытателям. «Анти-Дюринг» печатался в социал-демократической газете и носил явно выраженный полемический характер; «Диалектика природы» вообще стала известной лишь в 1925 г. Однако сами физики начали осознавать, что открытие закона сохранения энергии дает основу для нового синтеза, для цельного взгляда на природу, дает возможность построить единую физическую картину мира. Поскольку все формы энергии оказалось возможным измерить в единой мере, в единицах механической работы, считалось возможным свести все физические процессы к механическим движениям, построить механическую картину мира. Первым шагом в этом направлении явилось создание механической теории теплоты. Создатели механической или динамической теории теплоты осуществили программу, намеченную М.В.Ломоносовым еще в XVIII в. В основе этой программы лежало представление о теплоте как о форме движения мельчайших частиц вещества, «нечувствительных» частичек, по выражению Ломоносова, т. е. молекул и атомов согласно представлениям химиков XIX в. Атомно-молекулярное учение о материи сопутствовало физическим и химическим исследованиям на всем протяжении истории науки, начиная с Левкиппа и Демокрита. Оно то подавлялось и отходило на задний план, то вновь воскрешалось и вело мысль исследователя. Со времен Бойля оно стало служить химии и было положено Ломоносовым в основу учения о химических превращениях. Начало XIX в. ознаменовалось важными открытиями, стимулировавшими развитие химической атомистики. Это было открытие закона постоянства состава и закона кратных отношений. Закон постоянства состава был высказан еще в 1801 г. французским химиком Прустом (1754—1826). В противовес мнению другого французского химика—Бертолле (1748— 1822), учившего, что состав вещества изменяется непрерывно, Пруст утверждал, что процентное содержание компонент сложных веществ изменяется скачком. Спор с Бертолле продолжался восемь лет и закончился победой Пруста. Закон постоянства состава и скачкообразное изменение весового содержания компонентов в различных соединениях простых веществ подсказьюают идею о неизменяемых мельчайших частичках вещества, вступающих во взаимодействие друг с другом в сложных соединениях. Эта мысль была высказана и подробно обоснована английским химиком Джоном Дальтоном. Джон Дальтон родился 6 сентября 1766 г. в семье деревенского ткача. Как и его знаменитый соотечественник фарадей, он приобрел знания самообразованием и уже к 15 годам достиг таких успехов, что получил место преподавателя математики в школе города Кендала. В 1793 г. он становится преподавателем натуральной философии (так в английских колледжах называлась физика) и математики в колледже в Манчестере, где знаменитый социалист-утопист Роберт Оуэн вводит его в состав Манчестерского литературного и философского общества. Членом этого общества позднее был другой знаменитый манчестерец —Джоуль, а в XX в. на заседании этого общества Эрнст Резерфорд сделал доклад о своих опытах, приведших к открытию ядерной модели атома. Дальтон в 1800 г. становится секретарем общества, а с 1817 г. его председателем. Умер Дальтон в Манчестере 27 июля 1844 г. Дальтону принадлежат фундаментальные исследования смесей газов и паров, в результате которых он вывел названный его именем закон независимости парциальных давлений компонентов смеси (1801—1802). В 1802 г. за несколько месяцев до Гей-Люссака он установил закон теплового расширения газов. В 1803 г. Дальтон, руководствуясь атомистической гипотезой, вывел закон кратных отношений и доказал его на примере углеводородных соединений — метана и этилена. Дальтон ввел в химию фундаментальное понятие атомного веса и, приняв за единицу атомного веса вес атома водорода, определил атомные веса некоторых элементов. Ошибочно приняв, что в состав молекулы воды входит один атом водорода и один атом кислорода, он неправильно определил атомные веса кислорода и азота. Но Дальтон первым составил таблицу атомных весов и ввел химическую символику, правда, не вполне удачную и замененную в химии более удобной символикой Берцелиуса (1779-1848). Как нередко бывает в истории науки, открытия, легшие в основу современной химии, делались независимо и почти одновременно многими исследователями. К открытию атомного веса подходил немецкий химик Иеремия Рихтер (1762—1807). Закон расширения газов был установлен независимо от Дальтона в 1802 г. французским физиком и химиком Жозефом Луи Гей-Люссаком (1778—1850). Через три года после этого открытия Гей-Люссак начал совместно со знаменитым немецким естествоиспытателем Александром Гумбольдтом опыты, которые привели в 1808 г. к установлению закона кратных объемов, согласно которому объем газообразного соединения находится в простом кратном отношении к объемам компонентов. Однако теоретическое истолкование этого закона в ряде случаев приводило к противоречию с, данными Дальтона, и Дальтон резко выступал против этого закона. Сам же Гей-Люссак отказался от попыток теоретически истолковать открытый им закон и рассматривал его как опытный факт. В 1811 г. итальянский физик и химик Амедео Авогадро (1776-1856), развивая атомно-молекулярную теорию, установил закон, ныне носящий его имя: при одинаковых условиях температуры и давления в равных объемах газов содержится одинаковое количество молекул. При этом Авогадро допускал, что молекула одного и того же элемента может состоять из нескольких атомов, и это дало ему возможность объяснить результаты опытов Гей-Люссака в терминах атомно-молекулярной теории. Аналогичную точку зрения высказал в 1814 г. Ампер. Дальтон, Берцелиус и другие видные химики не приняли теорию Авогадро и задержали развитие химической атомистики до 60-х годов XIX в., когда Же-рар (1816—1856) подтвердил закон Авогадро новыми опытными данными и поддержанная итальянским химиком Канниццаро (1826—1910) атомно-молекулярная теория прочно вошла в химию. Утверждение атомной теории в химии соответствовало ее применению в физике, когда открытие закона сохранения энергии воскресило представление о теплоте как о форме движения. Это представление, высказанное в 1620 г. в смутной форме ф. Бэконом, развитое в 1743—17,45 гг. М.В.Ломоносовым, было вновь высказано одним из основателей закона сохранения и превращения энергии — Джемсом Джоулем в докладе «Некоторые замечания о теплоте и о строении упругих жидкоcтей», сделанном на заседании Манчестерского литературного и философского общества 3 октября 1848 г. Доклад был опубликован только через три года в трудах общества и затем через шесть лет в «Philosophical Magazine» Джоуль начинает с указания на свои опыты, результаты которых были доложены на съезде Британской Ассоциации в 1842 г. Эти опыты показали, «что магнитоэлектрическая машина дает нам возможность обратить механическую силу в теплоту». Вместе с тем они привели к выводу о взаимной обратимости теплоты и механической силы и, следовательно, к выводу, «что теплота является либо vis viva (живой силой) весомых частиц, либо некоторым состоянием притяжения и отталкивания способным порождать vis viva (живую силу)». Так Джоуль со всей ясностью пока зывает, что закон сохранения энергии находит свое выражение в превращении работы в теплоту в строго определенном количественном отношении. Ученый приходит к выводу, что теплота является формой кинетической энергии (живой силы) или потенциальной («некоторым состоянием притяжения и отталкивания») весомых частиц Упоминая о своих опытах 1844 г. по изменению температуры воздуха путем адиабатического сжатия или расшире ния, он заключает, что упругость газов «должна представлять собой эффект движения частиц, из которых состоит всякий газ». Приводя высказывание Дэви о теплоте как о колебательном движении частиц вещества, Джоуль указывает, что он лично «попытался показать, что вращательное движение, аналогичное описанному сэром Дэви, способно объяснить закон Бойля и Мариотта, а также другие явления, представляемые упругими жидкостями». Джоуль не знает, что Ломоносов объяснил закон Бойля с помощью гипотезы о вращательном движении «нечувствительных частичек». Однако он считает более простой гипотезу, высказанную в 1821 г. Герапатом, в которой частицы газа принимаются движущимися поступательно во всех направлениях, и исходит из этого представления, подчеркивая вместе с тем, что «гипотеза вращательного движения в равной мере хорошо согласуется с этими явлениями». Джоуль приводит подсчет скорости движения частиц водорода, находящегося при определенной температуре и давлении Он оперирует конкретными цифрами массы, температуры, давления водорода и, считая, что частицы движутся в сосуде кубической формы в равном количестве по трем направлениям, показывает, что «давление будет пропорционально квадрату скорости частиц» Джоуль определяет численное значение этой скорости. Вывод Джоуля совершенно конкретен газ — водород, масса газа 36,927 грана, давление 30 дюймов ртутного столба, температура 60° Фаренгейта. Скорость частиц водорода оказалась равной 6225 футам в секунду, при температуре замерзания воды (32° Фаренгейта) она будет 6055 футов в секунду Джоуль указывает, что при этих подсчетах частицы водорода считаются не имеющими заметного размера, иначе скорость получалась бы при том же давлении меньшей. Он указывает далее, что «абсолютная температура, давление и vis viva пропорциональны друг другу», а теплоемкость газа «выражается общей суммой vis viva при данной температуре» Таким образом, на основе конкретного числового подсчета Джоуль выводит основной закон идеального газа. В 1857 г в «Анналах» Поггендорфа была напечатана статья Клаузиуса «О роде движения, который мы называем теплотой «Перепечатывая эту статью в третьем томе своей «Механической теории тепла», Клаузиус дополнил ее исторической справкой, в которой упомянул о Джоуле, переиздавшем свою статью 1848 г. согласно пожеланию Клаузиуса в 1857 г., а также о работе Крёнига «Очерки теории газов», опубликованной в «Анналах» Поггендорфа в 1856 г. В этой справке Клаузиус называет длинный ряд имен, начиная с Лукреция, Гассенди, Бойля и Даниила Бернулли. Ломоносова он, однако, не упоминает, его работы, опубликованные в «Новых Комментариях» Петербургской Академии наук, были к тому времени уже забыты. Сам Клаузиус сознается, что к его списку, «вероятно, можно будет прибавить еще и ряд других авторов», но он «не читал более старых авторов». Так или иначе, но имя Ломоносова в период торжества его идей не упоминалось. Клаузиус подчеркивает, что его термодинамические исследования не связаны с какими-либо представлениями О тепловом движении. Все сделанные в первой части «Механической теории тепла» выводы «основываются на некоторых обидах законах, которые можно признать правильными, не делая никаких определенных предположений о природе теплоты». Эта общность термодинамических методов, впервые четко констатированная Клаузиусом, делает термодинамику чрезвычайно мощным инструментом исследования, применимым во всех областях физической науки. Вместе с тем Клаузиус признает, что его исследования «не были свободны от мысли о некоторой гипотезе» и что он «уже в начале своих работ, относящихся к теплоте..., попытался разобраться во внутреннем состоянии движения нагретого тела и составил себе об этом некоторое представление...». Это признание Клаузиуса очень важно. Еще до опубликования первой своей работы он руководствовался мо-лекулярно-кинетической гипотезой, она помогала ему выработать основные понятия и принципы теории теплоты. Термодинамике специальная гипотеза о природе теплоты не нужна, но создателю термодинамики она была необходима. «Таково свойство гипотез, — писал Д.И.Менделеев. — Они науке, и особенно ее изучению, необходимы... Гипотезы облегчают и делают правильную научную работу—отыскание истины как плуг земледельца облегчает выращивание полезных растений». Клаузиус излагает основные представления новой теории газов, которую он называет «кинетической». Молекулы газа движутся прямолинейно с постоянной скоростью, которая изменяется в процессе столкновения с другими молекулами или с непроницаемой стенкой. При этом «живая сила их движений в среднем сохраняет ту же величину, какую она имела до столкновения». Давление газа объясняется ударами молекул о непроницаемую стенку. Наряду с поступательным движением Клаузиус допускает и вращательное, а также некоторое колебательное движение внутри отдельных частичек. Если даже принять атомы абсолютно неизменными, то молекула, состоящая из нескольких атомов, «не образует уже абсолютно неизменной массы» и атомы внутри ее «могут колебаться друг относительно друга». Клаузиус допускает также возможность того, «что каждый весомый атом обладает еще и некоторым количеством более тонкой материи и что последняя, не отделяясь от атома, может поблизости от него совершать некоторые движения». Наличие этих внутренних движений приводит к тому, что отдельные молекулы между собой и с молекулами стенки взаимодействуют не упруго. В среднем же установившемся состоянии поступательное движение молекул не изменяется под влиянием движения частей молекул, и «при исследовании совокупного действия большого количества молекул можно пренебречь неправильностями, имеющими место при отдельных столкновениях, и полагать, что по отношению к поступательному двиясению молекулы следуют общим законам упругости». При этом Клаузиус считает, что поступательное движение каждой молекулы в среднем находится в постоянном отношении к движению ее составных частей. Еще в 1857 г. Клаузиус вывел основную формулу кинетической теории газов, согласно которой давление газа равно двум третям средней кинетической энергии всех молекул в единице объема. В третьем томе «Механической теории тепла» он снова обращается к этому выводу. Рассматривая механизм удара молекулы о стенку, он считает, что благодаря наличию движений составных частей молекул таза и стенки происходит взаимодействие этих внутренних движений и «в зависимости от фаз, в которых находятся движения последних в момент удара, они могут различным образом повлиять на движение всей молекулы, возникающее в результате удара». Как видим, Клаузиус ясно представлял себе сложность процесса столкновения молекул и атомов и определяющую роль движений их структурных элементов. Но для большого числа молекул в среднем дело обстоит так, как если бы молекулы отражались после удара о стенку «согласно тем же законам, что и упругие шары от неподвижной стенки». Таким образом, механизм упругого удара, обусловливающий давление газа, получается, по Клаузиусу, в результате усреднения, когда «можно принять, что после отражения молекулы в среднем обладают той же самой живой силой, какую они имели в момент налета, и что среди отраженных молекул все направления движений по отношению к стенке представлены совершенно так же, как были представлены направления движений налетевших на стенку молекул». Если сделать такое допущение, то, указывает Клаузиус, «при определении давления совершенно безразлично, если вместо среднего лишь равенства допустить существование равенства при каждом отдельном ударе». При обычном, школьном выводе просто предполагается, что молекула сталкивается со стенкой по законам упругого удара, и таким образом игнорируется тот сложный путь, который привел Клаузиуса к этому допущению. Вторым допущением Клаузиуса является гипотеза идеального (совершенного) газа: во-первых, молекулы газа «настолько малы, что их объемом можно пренебречь по сравнению с объемом, занимаемым всем газом, и, во-вторых, молекулы проявляют силы взаимодействия, лишь находясь в непосредственной близости друг от друга». Кроме того, при подсчете давления Кяаузиус делает мимоходом предположение, что молекулы газа «движутся во всех возможных направлениях, так что любое направление столь же вероятно, как и все прочие». Это гипотеза молекулярного хаоса. При вычислении давления Клаузиус использует второй и третий законы Ньютона, а так как к тому же от столкновения до столкновения молекулы, по предположению, движутся равномерно и прямолинейно по закону инерции, то, очевидно, Клаузиус принимает, что к молекулам и атомам применимы законы Ньютона, законы классической механики. Итак, Клаузиус строит кинетическую теорию газов на основе классической механики, привлекая молекулярные представления и статистику. В формуле давления у него фигурирует средний квадрат квадратов скоростей отдельных молекул. Он вычисляет среднее число столкновений и среднюю длину свободного пробега молекулы, оперируя понятиями теории вероятностей. Эти результаты и методы подсчета Клаузиуса ныне вошли в учебники физики. 21 сентября 1859 г. на собрании Британской Ассоциации содействия прогрессу наук Джемс Клерк Максвелл сделал доклад «Пояснения к динамической теории газов». Максвелл отмечает, что из молекулярной гипотезы «может быть выведено так много свойств материи, в особенности если ее взять в газообразной форме, что истинная природа этого движения является предметом естественного интереса». Максвелл указывает далее, что Даниил Бернулли, Джоуль, Крёниг, Клаузиус и другие «показали, что отношения между давлением, температурой и плотностью в совершенном газе могут быть объяснены, если предположить, что частицы движутся с постоянной скоростью по прямолинейным путям, ударяясь о стенки сосуда, содержащего газ, и вызывая этим давление». Для определения таких молекулярных величин, как средняя длина свободного пробега и диаметр молекулы, Максвелл исследует на основе законов механики движение и столкновение некоторого числа твердых, упругих шаров малого размера. Он приходит к выводу, что в такой системе в результате взаимных столкновений устанавливается распределение живых сил между частицами «согласно некоторому правильному закону». При этом возможно определить «среднее число частиц, скорости которых лежат между определенными пределами, хотя скорость каждой отдельной частицы изменяется при каждом столкновении». Максвелл находит следующие результаты. «1. Число частиц, скорость которых, разложенная в определенном направлении, лежит между х и x + dx, равно: (1) 2. Число частиц, действительные скорости которых лежат между v и v + dv, равно: (2) 3. Средняя скорость равна: 4. Среднее значение равно: Максвелл в качестве общего вывода констатирует, что «скорости распределяются между частицами по тому же закону, по которому распределяются ошибки между наблюдениями в теории «метода наименьших квадратов». Скорости лежат в пределах от 0 до °°, однако число молекул, имеющих большие скорости, сравнительно невелико. Далее Максвелл показывает, что если в одном и том же сосуде движутся две системы частиц, то «средняя живая сила каждой частицы одинакова в обеих системах». Позднее Максвелл в своей речи «Молекулы» говорил по поводу этого предложения: «Динамическая теория говорит нам также и о том, что происходит, когда молекулы различных масс сталкиваются друг с другом. Большие массы будут двигаться медленнее меньших, так что в среднем каждая молекула, большая или малая, будет иметь ту же энергию движения. Доказательство этой динамической теоремы — и в этом я заявляю свои права на приоритет — в последнее время получило широкое развитие и усовершенствование благодаря трудам д-ра Людвига Больцмана. Самое важное следствие, из нее вытекающее, состоит в том, что кубический сантиметр любого газа при постоянных температуре и давлении содержит одинаковое число молекул». Так закон Авогадро получил свое истолкование в кинетической теории газов наряду с другими законами идеальных газов. Максвелл определяет вероятность того, что частица пройдет заданное расстояние до того, как она столкнется с другой частицей, и находит ее равной , где х - заданное расстояние. Среднее расстояние, проходимое каждой частицей до столкнлвения, равно l =1/?. Он показывает далее, что давление, вызванное ударами частиц о стенку, выражается формулой: где N - число частиц в единице объема, М - масса каждой частицы, v - ее скорость. В выводе Максвелла фигурирует средняя длина свободного пробега, которая выпадает из конечного результата. Полагая MN = ? - плотность газа, получаем: p=k?, что выражает закон Бойля —Мариотта. При этом константа а выражается через средний квадрат скорости: так что Длину свободного пробега Максвелл определяет из коэффициента внутреннего трения. Рассматривая перенос количества движения («момента», по терминологии Максвелла) между двумя слоями газа, движущимися с различными скоростями, он находит выражение для силы трения, приходящейся на единицу площади: F = 1/3 MNlv (du/dz) , где du/dz — градиент скорости. Полагая F = ?(du/dz), согласно закону трения, находим: ? =1/3 MNlv = 1/3 ? lv. Но длина свободного пробега где S - диаметр частицы. Отсюда получаем: Максвелл пишет, что его уравнение «приводит нас к замечательному выводу», заключающемуся в том, что «коэффициент трения не зависит от плотности. Этот вывод из математической теории является крайне поразительным, и единственный опыт, с которым я встретился в этой области, его как будто не подтверждает». На самом деле, как оказалось, этот вывод подтвердился опытом в широких пределах давлений, но Максвелл считает необходимым «сопоставить свою теорию с тем, что известно о диффузии газов и. о происхождении теплоты через газ». Таким образом, Максвелл исследовал впервые явления переноса. Подводя итоги своим исследованиям, Максвелл писал: «Мы проследили здесь за математической теорией столкновения твердых упругих частиц в различных случаях, в которых, казалось бы, существует аналогия с явлением газов. Мы вывели, как это уже раньше сделали и другие, отношения давления, температуры и плотности для отдельного газа. Мы также доказали, что когда два различных газа свободно действуют друг на друга (а это бывает, когда они находятся при одной и той же температуре), то массы отдельных частиц каждого газа обратно пропорциональны квадрату молекулярной скорости и что, следовательно, при равной температуре и равном объеме количество частиц в единице объема одинаково». В резюме Максвелла обращает; на себя внимание тот факт, что он ни слова не говорит об открытом им законе распределения скоростей, зато подроб^ но говорит об объяснении закона Аво-гадро. Заметим, что об этом объяснении он всегда упоминал в своих популярных статьях и выступлениях. Между тем мы сейчас видим главную заслугу Максвелла в открытом им законе скоростей и забыли о том, что сам Максвелл считал наиболее важным. Теорию равномерного распределения энергии по степеням свободы мы связываем с Больцманом. Она охватывает открытие Максвеллом равенства средних энергий молекул независимо от их массы при одной и той же температуре и объясняет неудачу его попытки истолковать соотношение теплоемко стей. В теории Максвелла особенно наглядно видны ее механические предпосылки. Модель твердых упругих шариков, предложенная Максвеллом для объяснения газовых законов, работает по законам механики Ньютона. Максвелл не сомневался в применимости этих законов к атомам и молекулам. Но его поражал один замечательный факт в атомно-молекулярном мире; строгая определенность свойств молекул и атомов. «Молекулы, — пишет Максвелл, — образованы по одному и тому же типу с точностью, какой мы не находим в ощущаемых нами свойствах тел, ими образуемых. Во-первых, масса каждой молекулы и все другие ее свойства абсолютно неизменны. Во-вторых, свойства всех молекул одного рода абсолютно тождественны». Открытие спектрального анализа вновь подтвердило эту определенность свойств молекул и атомов. «При помощи спектроскопа, — говорил Максвелл, — длины световых волн различного рода можно сравнивать между собой до одной десятитысячной доли. Таким путем убедились, что не только молекулы каких угодно образчиков водорода в наших лабораториях имеют один и тот же ряд периодов колебаний, но что свет с тем же самым рядом периодов колебаний испускается Солнцем и неподвижными звездами. Таким образом мы убеждаемся, что молекулы такой же точно природы, как у нашего водорода, существуют и в отдаленных пространствах... Молекула водорода... находится ли она на Сириусе или на Арктуре, совершает свои колебания в точности в то же самое время. Следовательно, каждая молекула во Вселенной носит на себе печать меры и числа настолько же ясную, как и метр парижских архивов или как двойной царский локоть карнакского храма». Ум Максвелла останавливается перед этой таинственной, не объяснимой никакими известными в его время естественными причинами загадкой определенности молекул, необычайной устойчивости их свойств. Он сравнивает эту устойчивость с устойчивостью планетных орбит и указывает, что «научное значение этих астрономических и земных величин много ниже фундаментальных величин, образующих молекулярную систему». «Как мы знаем, — пишет Максвелл, — естественные процессы изменяют и в конце концов разрушают весь порядок и размеры как Земли, так и всей солнечной системы. Но если случались и вновь могут случиться катастрофы, если старые системы могут разрушаться и на их развалинах могут возникать новые системы, то молекулы, из которых эти системы построены, неразрушимы и неизменны — это краеугольные камни материальной Вселенной». Максвелл считает, что такая определенность и неизменяемость молекул, придающая им, по выражению Джона Гершеля, «характерные признаки фабричных изделий », «исключает мысль о возможности их вечного существования и самопроизвольного происхождения», т. е. молекулы и атомы должны быть «изготовлены» богом. Так, по Максвеллу, мы подошли к точке, «дальше которой наука идти не может». Но наука пошла дальше. То, перед чем остановился Максвелл и к чему призвал на помощь бога, то, что было совершенно необъяснимо с точки зрения классической физики, привлекло внимание Бора. Он открыл в этой определанности «числа и меры» определенность квантовых законов, в которых господствует неизменная и неразрушимая величина — постоянная Планка. Бор в своей нобелевской речи также сравнивает законы, управляющие движением планет, с законами, господствующими в атоме водорода, как и Максвелл. Квантовая физика нашла ключ к разрешению загадки, перед которой остановился Максвелл. Но величие Максвелла в том и проявляется, что он понял, что это загадка, непосильная для классической физики. Дальнейшее развитие теплофизики и атомистики Термодинамика и кинетическая теория газов затрагивали самые глубокие вопросы мировоззрения. Единство сил природы, направленность естественных процессов, неизменность «кирпичей мироздания» —все эти вопросы так или иначе возникали из новых теорий и представлений. Рушилась концепция мира, разделенного непе-реходимыми перегородками на отдельные области. Одним из последних устоев этой концепции было представление о совершенных, «постоянных» газах, не переходящих ни в жидкое, ни в твердое состояние и поэтому существенно отличающихся от паров жидкостей. «Есть ли разница между паром и газом?» — спрашивал А. Г. Столетов в своем «Очерке развития наших сведений о газах» (1879), подходя к вопросу о сжижении газов. Столетов излагает историю развития учения о парах, формирования представлений о ненасыщенных парах, не отличающихся в своем поведении от газов, и насыщенных парах, которые не подчиняются закону Бойля — Мариотта, и, наконец, историю сжижения газов. Эта история начинается с опытов Каньяра де Латура (1777-1859), проведенных в 1822 г. Нагревая жидкости (воду, эфир, алкоголь) в запаянных трубках, он заметил, что при некоторой температуре, различной для разных жидкостей, вещество в трубке становится однородным, представляя собой густой пар. Для эфира это происходило при температуре 200°С, для спирта —около 260°С, для воды — около 360°С. Таким образом инженер-географ, а потом чиновник министерства внутренних дел Каньяр де Латур еще в первой четверти XIX в. установил, что при определенных условиях граница между жидкостью и ее газом исчезает. Через год молодой ассистент Дэви М. фарадей получил жидкий хлор, затем, нагревая один конец изогнутой стеклянной трубки с газом и охлаждая другой конец, обратил в жидкость девять газов, а в 1844—1845 гг. еще шесть. При этом фарадей сделал очень важный вывод из опытов Каньяра де Латура, указав, что существует температура, при которой «нельзя ожидать, что какое-либо повышение давления, исключая, быть может, чересчур сильное, могло обратить газ в жидкость». В 1861 г. существование такой температуры было установлено Д. И. Менделеевым. Он назвал ее абсолютной температурой кипения. «Чтобы истинное значение такой температуры, — писал Менделеев в первом томе своих «Основ химии», —выступило явственно, следует обратить внимание на то, что жидкое состояние характеризуется сцеплением частиц, отсутствующим в газах и парах. Сцепление жидкостей выражается в капиллярных явлениях... и произведение из плотности жидкости на высоту ее поднятия в капиллярной трубке (определенного диаметра) может служить мерою величины сцепления... Сцепление жидкостей уменьшается при их нагревании, поэтому уменьшаются и капиллярные высоты. Опыт показывает, что это уменьшение (почти) пропорционально температуре, а потому из капиллярных наблюдений получается, что при некоторой возвышенной температуре сцепление становится равным нулю. Если в жидкости исчезает сцепление частиц — она становится газом, ибо между этими двумя состояниями нет, кроме сцепления, иного коренного различия. Преодолевая его, жидкости при испарении поглощают теплоту. Поэтому температура абсолютного кипения определена мною (1861) как таковая, при которой: а) жидкость не существует и дает газ, не переходящий в жидкость, несмотря на увеличение давления; b) сцепление = 0 и с) скрытая теплота испарения = 0». Наблюдения Каньяра де Латура, выводы фарадея и Менделеева не получили резонанса. «Понятия эти, — писал Менделеев, — мало распространились, пока Эндрюс (Andrews, 1869) не выяснил дела с другой стороны, именно исходя из газов. Он нашел, что углекислый газ при температурах выше 31°С не сгущается ни при каких давлениях, при низких же температурах может сжижаться. Температуру эту он назвал критической. Очевидно, что она тождественна с температурой абсолютного кипения ». Томас Эндрюс родился 19 декабря 1813 г. в Белфасте. Он изучал химию в университете в Глазго. Уже вскоре после поступления в университет он в своей домашней лаборатории выполнил две химические работы. Для совершенствования своих химических познаний он едет в Париж, где работает в лаборатории Дюма и одновременно в госпитале с целью изучения медицины. Возвратившись на родину, он продолжает образование в Дублинском колледже св. Троицы и в Ирландской медицинской школе. В 22 года он получает степень доктора медицины в Эдинбурге, а затем профессора химии в родном городе Белфасте в Королевском колледже. В 1845 г. он становится вице-президентом колледжа и занимает эту должность до выхода в отставку в 1879 г. Умер Эндрюс 26 ноября 1885 г. Основополагающая статья Эндрюса «О непрерывности газообразного и жидкого состояний вещества» была прочитана в Лондонском Королевском обществе 17 июня 1869 г. и опубликована в 159-мтоме «Philosophical Transactions of fhe Royal Society» за 1869 г. Эндрюс начинает ее с истории вопроса, с опытов Каньяра де Латура, исследований фарадея, Реньо, Пулье, Натерера, подвергавших газы сжатию до 2790 атмосфер.( 1 атмосфера (1 ат) равна 9,8 • 100000 Па. ) Он указывает на свою заметку 1861 г., в которой описывает попытку обратить в жидкость кислород, водород, азот, окись углерода и окись азота, подвергая их большим давлениям и одновременно охлаждению в ванне из углекислоты и эфира. Опыты дали отрицательный результат. Далее он приводит выдержку из своего письма Миллеру, опубликованную в «Химической физике» в 1863 г.: «При частичном снижении углекислоты посредством одного только давления и при постепенном повышении в то самое время температуры до 88° Фаренгейта (31,1°С. — П.К.) поверхность раздела между жидкостью и газом делается менее резкой, теряет свою кривизну и, наконец, исчезает. В это время пространство заполнено однородным текучим веществом, в котором в случае внезапного уменьшения давления или небольшого понижения температуры обнаруживается характерное явление полос, перебегающих или волнующихся по всей его массе. При температуре выше 88° нельзя получить никакого видимого снижения углекислоты или разделения ее на две отличные друг от друга формы вещества, даже если прилагать давления в 300 или 400 атмосфер. Окись азота дала сходные результаты». В статье 1869 г. Эндрюс подробно описывает аппаратуру, примениющуюся при исследованиях. Изменяя температуру углекислого газа от 13 до 48°С, он получил изотермы, имевшие при температурах ниже 31,1°С характерный излом, показывающий сжижение газа и переход кривой в прямую, параллельную оси абсцисс, при полном обращении газа в жидкость. При температуре 31,1°С, которая была на 0,2° выше температуры, названной им критической, никакого разделения газа на две части не наблюдается «и самое тщательное исследование не может открыть никакой однородности в состоянии углекислоты внутри трубки». При дальнейшем повышении температуры изотермы непрерывно приближаются к той изотерме, «которая представляет изменение объема совершенного газа». Изменяя давление и температуру, Эндрюс добивался непрерывного перехода вещества «из состояния, которое всеми рассматривается как газообразное, в то, которое подобным же образом обычно рассматривают как жидкое...» «Дело начинается с газа и через ряд постепенных изменений, нигде не представляющих какого-нибудь резкого изменения объема или внезапного развития тепла, кончается жидкостью». Эндрюс ставит важный вопрос, что происходит с углекислотой в критическом состоянии: «Продолжает ли она оставаться в газообразном состоянии, или она превратилась в жидкость, или мы имеем дело с новым состоянием материи?» Эндрюс считает, что ответ на этот вопрос «надо найти в близких внутренних соотношениях, которые существуют между газообразными и жидкими состояниями вещества». Жидкость и газ являются различными формами одного и того же вещества, и от одной формы к другой можно перейти непрерывным изменением. Отсюда началась длительная дискуссия о природе критического состояния. Эндрюс считал, что называть ли вещество в этом состоянии жидкостью или газом — дело вкуса. Важно, что это особое переходное состояние. Скажем несколько слов об экспериментальной технике Эндрюса. Сжатие газа производилось с помощью винта, давление при этом достигало 4 • 107 Па. Эндрюс работал с газами, имеющими высокую критическую температуру, и проблема получения низких температур перед ним не стояла. Основная цель его исследования заключалась не в проблеме сжижения газов, а в доказательстве отсутствия резкого различия между паром и газом, в доказательстве возможности непрерывного перехода от газа к жидкости. Энгельс отмечал результат Эндрюса как важный момент в переходе от метафизического к диалектическому мировоззрению. В предисловии к «Анти-Дюрингу» он писал: «Прежние неизменные противоположности и резкие, непереходимые разграничительные линии все более и более исчезают. С тех пор, как было достигнуто сжижение последних «истинных» газов, как было установлено, что тело может быть приведено в такое состояние, в котором капельножидкая и газообразная формы неразличимы,— агрегатные состояния потеряли последний остаток своего прежнего абсолютного характера».(Энгельс ф. Анти-Дюринг. - Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, С. 13. ) Непрерывность жидкого и газообразного состояний была теоретически исследована в диссертации Ван-дер-Ваальса (1837—1923), опубликованной в 1873 г. Эта диссертация вышла вторым изданием в 1899 г., составив первую часть монографии «Непрерывность газообразного и жидкого состояний». Вторая часть этой монографии, посвященная бинарным смесям, вышла в 1900 г. В 1910 г. Ван-дер-Ваальсу «за его труды, относящиеся к уравнению состояния газов и жидкостей», была присуждена Нобелевская премия по физике. В предисловии к своей диссертации 1873 г. Ван-дер-Ваальс писал: «Название «Непрерывность газообразного и жидкого состояний», кажется вполне подходящим, поскольку в основу рассуждений положена главная мысль, что от одного агрегатного состояния можно совершенно непрерывным образом достигнуть другого; выражаясь геометрически, это значит, что обе части изотермы принадлежат одной кривой, даже тогда, когда эти части связаны частью, которая не может быть осуществлена в действительности». «Строго говоря, — продолжает Ван-дер-Ваальс, — я хочу доказать еще больше, а именно тождественность обоих агрегатных состояний». Ван-дер-Ваальс считает, что между жидкостью и газом существует только количественное различие в большей или меньшей плотности, но не качественное. Уравнение Ван-дер-Ваальса и его изотермы вошли во все учебники физики, и на их рассмотрении мы останавливаться не будем. Работа Эндрюса получила широкий резонанс, и критическое состояние стало предметом исследования физиков многих стран. Существенный вклад в изучение критического состояния внесли русские физики А.Г.Столетов (1839-1896), Б. Б. Голицын (1862-1916), М.П.Авенариус (1835-1895). А.Г.Столетов в ряде статей (1882, 1892, 1893, 1894) рассмотрел и разъяснил вопросы, относящиеся к критическому состоянию, высказал существенные замечания по некоторым утверждениям. Он изучил обширную литературу по теме, начиная с работ Эндрюса и Ван-дер-Ваальса. Он отмечает, что с теоретической стороны идея Эндрюса (Столетов пишет «Андрюс») разработана Ван-дер-Ваальсом, Клаузиусом и Максвеллом, а с экспериментальной «прежде всего и более всего трудами М.П.Авенариуса и его учеников (Зайончевского, Надеждина, Страуса)». Ученик Ленца М.П.Авенариус, продолжая традиции своего учителя, в 70-х годах организует физическую лабораторию в Киевском университете. В лаборатории Авенариуса по существу впервые в России был поставлен физический практикум и студентами велись научные исследования. Несмотря на то что, как говорил Авенариус, «помещение лаборатории мизерно до невозможности», здесь под руководством Авенариуса проделан ряд превосходных работ по физике критического состояния. Результаты исследований Авенариуса и его учеников по определению критических постоянных различных веществ вошли в мировую справочную литературу. Вопрос о критическом состоянии тесно связан с проблемой сжижения газов. Газ никаким давлением не может быть обращен в жидкость, если он не охлажден до температуры ниже критической. Существуют различные методы сжижения газов. Адиабатический метод основан на охлаждении газа при адиабатическом расширении. Этим методом Кальете обратил в декабре 1877 г. в жидкость кислород. Кислород, сжатый в трубке до давления 3000 атмосфер и охлажденный с помощью соответствующей смеси до — 29°С, внезапно расширялся, давление падало до 1 атмосферы, температура понижалась до — 200°С. Швейцарский физик Рауль Пикте (1846-1929) добился почти одновременно с Кальете сжижения кислорода, получив кислород в виде жидкости, а не тумана, как у Кальете. Пикте применял последовательное, или каскадное, охлаждение. Рис. 42. Аппарат для сжижения гелия в лаборатории Камерлинг-Оннеса в Лейдене Немецкий физик Карл Линде (1842— 1934), применив дроссельный эффект, или эффект Джоуля — Томсона, открытый этими учеными в 1852 г., построил машину для получения жидкого воздуха с производительностью несколько литров в час. Этот принцип позволил в 1898 г. Дьюару (1842—1923) ожижить водород, что тщетно пытались сделать Пикте, Вроблевский, Ольшевский (1846—1915). Последние наблюдали на мгновение туман из капель водорода, но получить ощутимую порцию жидкости им не удавалось. Вроблевский (1845— 1888) погиб от взрыва при опыте по сжижению водорода. Еще труднее оказалось обратить в жидкость гелий— Х. Камерлинг-Оннес (1853—1926) смог осуществить сжижение гелия только спустя 10 лет после сжижения водорода. Первая порция жидкого гелия была получена им 10 июля 1908 г. У гелия очень низкая температура инверсии (—240°С), а дроссельное охлаждение начинается только при температуре ниже температуры инверсии. Поэтому гелий приходится предварительно охлаждать жидким водородом, а потом уже пропускать через дроссель. Этот метод оказывается очень сложным и малоэффективным, и в течение длительного времени лишь лейденская лаборатория Камерлинга-Оннеса производила жидкий гелий. В 30-х годах XX в. появились новые эффективные установки, в частности известный турбодетандер П.Л.Капицы. Переходим теперь к теоретическим достижениям. Здесь прежде всего необходимо указать на интенсивное развитие термодинамики, которая из механической теории теплоты превратилась в мощную теоретическую дисциплину, применимую не только к механическим и тепловым, но и к другим областям физики и химии. Этой мощью термодинамика обязана общности своих понятий и методов, приложимых к любой конкретной физической системе независимо от ее структуры и состояния . Так, уже Карно нашел и успешно применил метод циклов к исследованию тепловых машин и получил результат, не зависящий от конкретного устройства машины. Метод циклов позволил Клаузиусу получить результаты термодинамики весьма общего характера. В дальнейшем развитии термодинамики метод циклов широко использовался, изобретались различные циклы, позволяющие получить надежные выводы о том или ином физическом или химическом процессе. Наряду с методом циклов развился и аналитический метод— метод термодинамических функций. Термодинамические функции—это функции состояния системы, обладающие тем свойством, что при переходе системы от одного состояния в другое их изменение не зависит от пути перехода и дифференциал таких функций есть полный дифференциал. Такой функцией является потенциальная энергия в механике. Но еще до установления закона сохранения энергии петербургский академик Герман Иванович Гесс (1802—1850), изучая теплоту, выделяемую или поглощаемую при химических реакциях, нашел, что, «каким бы путем ни совершалось соединение—имело ли место оно непосредственно или происходило косвенным путем в несколько приемов,— количество выделившейся при его образовании теплоты всегда постоянно». Этот принцип Гесс нашел еще в 1836 г. Он обосновал его далее экспериментально и в 1840 г. сформулировал в виде положения: «Когда образуется какое-либо химическое соединение, то при этом всегда выделяется одно и то же количество тепла, независимо от того, происходит ли образование этого соединения непосредственно или же косвенным путем». Этот термохимический закон Гесса может быть выражен аналитически, если ввести функцию состояния — энтальпию, или тепловую функцию Количество теплоты не является функцией состояния, количество теплоты, выделяемое или поглощаемое при физическом процессе, зависит от характера процесса. Но химическая реакция наблюдается в условиях постоянного давления, и в этом случае, действительно, количество теплоты не зависит от характера перехода и выражается разностью значений энтальпии. Однако энтальпия была введена в термодинамику значительно позже 1840 г. Термодинамические функции — внутренняя энергия и энтропия — были введены Клаузиусом. В 1869 г. Массье (1832—1896) прибавил к этим функциям две новые, которые он назвал характеристическими. Если обозначить внутреннюю энергию через V, энтропию через S, абсолютную температуру через Т, объем через V, а давление через р, то функции Массье имеют вид: (-U+TS)/T и (-U+TS-pV)/T. Массье показал, что из функции такого вида могут быть выведены термодинамические свойства жидкости. Дальнейший шаг был сделан американским физиком Гиббсом. Джозайя Вилард Гиббс родился 11 февраля 1839 г. в Нью-Гевене, штат Коннектикут, в семье профессора Гейльского университета. В 1866 г. он уехал на три года в Европу, был в Париже, учился в Берлине у Магнуса, в Гейдельберге у Кирхгофа и Гельмгольца и в 1869 г. вернулся в Нью-Гевен, где в 1871 г. получил звание профессора математической физики Иельского университета Первые работы Гиббса, начиная с его докторской диссертации, были посвящены технической механике. Став профессором, он читал механику, волновую оптику, векторный анализ, теорию электричества и магнетизма. В 1873 г. появились его первые термодинамические работы «Графические методы в термодинамике жидкостей» и «Метод геометрического представления термодинамических свойств веществ при помощи поверхностей». В первой из этих работ Гиббс развил графический метод, впервые примененный Клапейроном в теории цикла Кар-но. Клапейрон представлял процессы цикла графически в системе осей: объем — давление. Гиббс ввел диаграммы в переменных: энтропия и температура, энтропия и объем, логарифмы объема, температуры и давления. Цикл Карно в системе энтропия — температура изображался, как отмечал сам Гиббс, «чрезвычайно простой фигурой — четырехугольником, в котором стороны параллельны осям координат». Распространение графического метода на термодинамику очень ценил Максвелл, отмечая, что Гиббсу «мы обязаны тщательным исследованием различных методов представления термодинамических соотношений с помощью плоских диаграмм». Особенно восхищался Максвелл второй работой Гиббса, в которой Гиббс «предложил чрезвычайно плодотворный метод, а именно исследование свойств любого вещества при помощи поверхности». Эту термодинамическую поверхность, как ее называл Гиббс, он строил в системе осей, в которой прямоугольные координаты различных точек поверхности были равны объему, энтропии и энергии тела в его различных состояниях. Максвелл собственноручно изготовил гипсовую термодинамическую поверхность воды и послал ее Гиббсу. Заметим, что термодинамическая поверхность воды, по Гиббсу и Ван-дер-Ваальсу, стала предметом кандидатского сочинения молодого русского физика Д. А. Гольдгаммера, которое он закончил в 1882 г. Оно было опубликовано в «Ученых записках» Московского университета в 1885 г. В этой же работе Гиббс формулирует условие устойчивого равновесий термодинамической системы в виде1 минимального значения функции U-TS+pV (у Гиббса: е-Гр+рУ), которую мы теперь называем термодинамическим потенциалом Гиббса. В большом исследовании «О равновесии гетерогенных систем», публиковавшемся в 1875—1878 гг., Гиббс развил и широко применил метод термодинамических функций. Указав, что такие термодинамические функции, как энергия и энтропия, значительно облегчают понимание законов, управляемых любой термодинамической системой, Гиббс отмечает, что «разные значения энергии и энтропии в целом характеризуют то, что существенно в действиях, производимых системой при переходе от одного состояния к другому». Он пишет далее, что функция, выражающая способность системы совершать механическую работу, «играет ведущую роль в теории равновесия». Именно здесь Гиббс, комбинируя такие функции состояния, как энтропию, которую он обозначает н), и энергию, которую он обозначает ?, вводит дит функцию: ?= ?-t? (в современных обозначениях F = U - TS), ?=?+рV (в современных обозначениях Н = U + PV), ?=?-t? + pV (в современных обозначениях ? = U - TS + pV). Первую из этих функций переоткрыл Гельмгольц в 1882 г., назвал ее «свободной энергией» и с ее помощью построил термодинамическую теорию гальванического элемента. Вторая функция получила название энтальпии или тепловой функции. С ее помощью описывается процесс Джоуля — Томсона. Последняя функция называется термодинамическим потенциалом Гиббса. В своем исследовании Гиббс сформулировал условия равновесия гомогенной и гетерогенной системы, состоящей из произвольного числа компонентов и фаз. Термин «фаза» введен Гиббсом, под ним он понимает тела, характеризуемые состоянием и составом, причем «мы считаем все тела отличающимися друг от друга только количеством и формой, разными образцами одной и той же фазы». Рассматривая условия равновесия гетерогенной системы, Гиббс находит правило фаз, согласно которому система, состоящая из r фаз и п независимых компонентов, «способна к n+2 - r измерениям фаз», или, как принято говорить теперь, имеет f = n+2-r степеней свободы. Вскоре после окончания своего классического исследования, весной 1879 г. Гиббс был избран членом Национальной Академии США, в 1880 г. — членом Американской Академии наук и искусств в Бостоне. В благодарственном письме в Бостонскую Академию Гиббс, между прочим, писал: «Ведущей идеей моей работы «Равновесие гетерогенных систем» было выявление роли энергии и энтропии в теории термодинамического равновесия. При их помощи легко выразить общее условие равновесия, а приложение его к различным случаям приводит нас сразу к специальным условиям, характеризующим эти случаи». Научная слава Гиббса быстро росла после опубликования его термодинамических работ. Он избирается членом многих зарубежных академий и научных обществ, получает научные награды. В 1902 г. вышел фундаментальный труд Гиббса «Основы статистической механики». 28 апреля 1903 г. Гиббс скончался. После Гиббса термодинамика перестала быть только механической теорией теплоты она превратилась в весьма общую теоретическую систему, прило-жимую ко всем физическим и химическим процессам. Гельмгольц, применивший в 1882 г. свободную энергию к теории гальванического элемента, писал в статье «К термодинамике химических процессов»: «Наиболее исчерпывающим и общим способом термодинамические условия для молекулярных и химических процессов в системах тел, состоящих или смешанных из произвольного числа простых веществ, были развиты аналитически г-ном Д. В. Гиббсом (1878)». М.Планк применил в 1888 г. метод Гиббса к теории разведенных растворов. Читая лекции по теоретической физике в Колумбийском университете в Нью-Йорке 24 апреля 1909 г., он говорил: «Как глубоко охватывает это предложение (принцип возрастания энтропии) все физические и химические отношения, на это лучше и полнее других было указано Джоном Вилардом Гиббсом, одним их наиболее знаменитых теоретиков всех времен не только Америки, но и всего мира». Всеобъемлемость принципов термодинамики, в частности второго начала, заставляла физиков-теоретиков искать причины такой универсальной мощи термодинамики. В результате в науке возникли два направления: феноменологическое и атомистическое, феноменологическое направление не считало необходимым искать более глубоких причин физических процессов, оно ограничивало задачу изучения природы описанием явлений на основе экспериментально установленных принципов. Успехи термодинамики привели к появлению энергетического направления в науке. Энергетики Гельм, Оствальд и другие считали энергию основным понятием науки, а такие понятия, как «материя», «сила», производными и даже излишними. Что касается представления об атомах и молекулах, то энергетики, а также венский физик Эрнст Мах, один из видных сторонников феноменологического направления, считали эти представления продуктами чистой фантазии, аналогичными представлениям о ведьмах и привидениях. Раскрывать понятия и законы термодинамики с помощью молекулярно-кинетической теории они считали антинаучным занятием. Однако такие видные представители науки, как Клаузиус, Максвелл, а затем Больцман, с успехом разрабатывали мо-лекулярно-кинетическую теорию. Идея молекулярного движения, происходящего по законам механики, вместе с тем подсказывала мысль: обосновать термодинамику законами механики. Осуществлению этой мысли посвятили усилия Клаузиус, Гельмгольц, Больцман и др. Здесь с самого начала возникала трудность объяснения второго начала и необратимых процессов, поскольку уравнения механики обратимы. Попытка истолковать второе начало с помощью вариационного принципа Гамильтона не принесла ощутимых результатов. Но Больцману удалось получить фундаментальный результат и заложить основы статистической механики. Людвиг Больцман родился 20 февраля 1844 г. в Вене. Учился он в университетах Вены, Гейдельберга и Берлина. Еще студентом он публикует в Вене работы: «О движении электричества в кривых поверхностях» (1865) и «О механическом истолковании второго начала теории тепла» (1866). Этой второй работой начался длительный цикл работ Больцмана по выяснению связи между термодинамикой и механикой. Цель своей работы он формулирует так: «Дать чисто аналитическое, совершенно общее доказательство второго начала теории тепла и отыскать соответствующий ему принцип механики». В 1867г. Больцман кончает университет и публикует работу «О числе атомов в молекуле газа и внутренней работе в газе». В 1868 г. он издает большую работу «Исследование равновесия живых сил движущихся материальных точек» и другие статьи. Талант крупного теоретика настолько ясно выразился в этих ранних работах Больцмана, что в следующем, 1869 г. двадцатипятилетний Больцман избирается профессором физики в Граце. Отметим, что в Граце Больцман руководил кафедрой экспериментальной физики, на которой была уже создана прекрасная физическая лаборатория, оборудованная всем необходимым как для научных исследований, так и для студенческого практикума. Он занимает здесь кафедру до 1873 г., затем возвращается в Вену, чтобы занять здесь кафедру математики. В Вене Больцман пробыл всего три года и в 1876 г. вновь возвращается в Грац, где остается до 1889 г. В этот период он выполняет свои важнейшие работы по статистической физике. С 1889 по 1894 г. Больцман — профессор в Мюнхене, с 1894 по 1900 г. Больцман опять в Вене, откуда уезжает на два года (1900—1902) в Лейпциг. В 1902 г. Больцман возвращается в Вену, где живет до своей смерти, последовавшей 16 сентября 1906 г. Фундаментальным вкладом Больц-мана в физику является создание статистической механики и статистического обоснования второго начала. Уже в ранней работе «Исследование равновесия живых сил движущихся материальных точек» Больцман ставит задачу «найти общую теорему для вероятности распределения положений и скоростей таких движущихся материальных точек». Для случая частиц, находящихся в сильном поле, потенциальная энергия которого зависит от координаты х и равна f(x), Больцман находит, что «вероятность того, что х находится между х и х + dx..., пропорциональна », и вероятность того, что скорость лежит между с и с + dс, «для каждого х пропорциональна ». Таким образом, Больцман уже в возрасте двадцати четырех лет нашел закон распределения, носящий теперь его имя. Больцман, основываясь на работе Максвелла, обобщил его закон распределения, рассматривая газ в силовом поле. Дальнейшее обобщение Больцман сделал в работе «О тепловом равновесии многоатомных молекул газа». «Для случая, когда каждая молекула является одной материальной точкой, — писал Больцман, — Максвелл определил вероятность различных состояний». Больцман выписывает закон Максвелла в виде: где N - число молекул в единице объема, с - скорость молекул, h - константа, определяемая температурой. «Но встречающиеся в природе молекулы, — писал Больцман, — отнюдь не являются простыми материальными точками. Мы, очевидно, будем ближе к действительности, если будем рассматривать их как систему нескольких материальных точек (так называемых атомов), которые удерживаются вместе определенными силами. Тогда состояние молекулы в определенный момент времени будет определяться не одной переменной, а многими». Максвелл в 1875 г. в статье «О динамическом доказательстве молекулярного строения тел» присоединяется к результатам Больцмана. Он писал: «Опубликованные мной в 1860 г. результаты подверглись затем более строгому исследованию доктора Людвига Больцмана, применившего также свой метод к изучению движения сложных молекул». Указав на трудности теории теплоемкости, Максвелл считает, что теорема Больцмана дает возможность объяснить закон Дальтона, выравнивание температур в вертикальном столбе газа и «открывает, по-видимому, путь в чисто химическую область исследования». Критические замечания Максвелла о кинетической теории теплоемкости также примыкают к рассуждениям Больцмана. Больцман показал, что средняя кинетическая энергия всех атомов, которые считаются точками, одна и та же и равна 3/2h. Отсюда для двухатомных молекул отношение теплоемкостей Ср /Сv должно равняться 1,33, а опыт дает для воздуха 1,41. Больцман считает это расхождение обусловленным взаимодействием молекул с эфиром. Максвеллу это объяснение кажется сомнительным. В 1876 г. Больцман уточнил свою теорию теплоемкости. В статье «О природе газовых молекул» он указал на про тиворечие своей теории с опытом и сослался на обобщение его теоремы, сделанное Максвеллом и Уатсоном. Максвелл и Уатсон понимали молекулу как систему, положение которой определяется т переменными величинами, не зависящими от движения молекул. Это число т называется числом степеней свободы. Для одноатомной молекулы число степеней свободы равно 3 и отношение теплоёмкостей равно 1и2/3. Для двухатомных молекул число степеней свободы равно пяти: «три координаты центра тяжести и две переменных, определяющих направление центральной линии молекулы». Поэтому для них оно будет ?`/?=1,4. Если молекулу представлять как твердое тело с шестью степенями свободы, то ?`/? =1,33. Теорема Больцмана о равномерном распределении кинетической энергии по степеням свободы молекулы, лежащая в основе классической теории теплоемкости, является важным результатом статистики Больцмана. Однако важнейшим результатом многолетних исследований Больцмана по кинетической теории газов было открытие им связи между энтропией и вероятностью. Упорные поиски механического обоснования второго начала термодинамики увенчались успехом. Но это обоснование потребовало введения понятия вероятности и было достигнуто на путях развития статистической механики. Формулировка, развитие и защита «теоремы— Н», которая выражает связь между энтропией и вероятностью данного состояния системы, составили дело жизни Больцмана. Оно началось с его юношеской работы 1866 г. и продолжалось до последней статьи «Кинетическая теория материи», написанной is сотрудничестве с Ноблем для «Математической энциклопедии». Статья была закончена в октябре 1905 г., и выпуск «Энциклопедии», в котором она была опубликована, был снабжен кратким сообщением «Памяти Людвига Больцмана», начинавшимся словами: «В этом выпуске на первом месте помещена статья Больцмана о кинетической теории материи и вместе с тем это последнее создание его рук». Основная работа, в которой Больцман впервые формулирует свою теорему, — это работа 1872 г. «Дальнейшее исследование теплового равновесия газовых молекул». Здесь Больцман со всей четкостью утверждает, что «проблемы механической теории теплоты являются проблемами статистическими». Больцман выводит основное уравнение для функции распределения f и показывает, что существует такая функция Е, зависящая от логарифма f, которая всегда убывает и лишь при достижении статистического равновесия остается постоянной. В этом состоянии равновесия функция распределения совпадает с максвелло-больцмановским распределением. В статье 1877 г. «О связи второго начала механической теории теплоты с исчислением вероятностей» Больцман подробно развивает свой статистический метод. Он указывает в самом начале статьи, что связь между вторым началом термодинамики и исчислением вероятностей «обнаруживается прежде всего в том, что, как мною было показано, аналитическое доказательство второго начала невозможно никакими другими способами, кроме тех, которые заимствуются из теории вероятностей». Чрезвычайно интересно с исторической точки зрения введение Больцманом в этой работе гипотезы, что молекула газа может терять и приобретать только дискретные порции энергии, кратные некоторой наименьшей порции энергии ?. «Перед столкновением, — пишет Больцман, — каждая из обеих сталкивающихся молекул имеет живую силу 0, или ?, или 2? и т. д. ... или p? и вследствие какой-то причины будет происходить то, что и после соударения никогда ни одна из сталкивающихся молекул не принимает живой силы, не содержащейся в этом ряде». Так Больцман начинает свои статистические рассуждения, оговариваясь, однако, что это фикция, которой не соответствует ничего реального, но которая облегчает математическую трактовку проблемы. В дальнейших вычислениях Больцман освобождается от гипотезы, полагая в пределе эпсилон ?=0. Больцман ставит задачу найти закон распределения, который позволяет знать, как много из общего числа молекул n обладает энергией 0, ?, 2?,.... Он подсчитывает, сколько комбинаций соответствует такому распределению состояний, полагая, что число этих комбинаций определяет вероятность данного состояния. Если бы Больцман считал молекулы газа неразличимыми, как это делал в квантовой теории идеального газа Эйнштейн, и сохранил предположение о конечной порции энергии, то он получил бы формулу статистики Бозе—Эйнштейна. Но Больцман этого не сделал. Он считал неразличимыми между собой молекулы, находящиеся в одном и том же энергетическом состоянии. Однако когда молекула одной энергетической группы меняется местами с молекулой другой энергетической группы, то, хотя распределение молекул не меняется, тем не менее возникает новая комплексия. Число комплексий, которым может быть осуществлено данное состояние, и определяет, по Болыдману, вероятность этого состояния. Таким образом, она, по Больцману, определяется числом: где n - общее число молекул, w0 - число молекул, обладающих энергией, равной нулю (Больцман считает энергию между 0 и ?, отступая от первоначальной квантовой гипотезы), w1, — число молекул, обладающих энергией ? (между ? и 2?), и т. д. При этом и общая энергия и общая энергия Логарифмируя выражение для вероятности и определяя максимум этой логарифмической функции при условии постоянства n и L, Больцман находит распределение Максвелла — Больцмана, которое оказывается, таким образом, наиболее вероятным распределением. Подсчитывая наиболее вероятное распределение скоростей, Больцман вводит величину ?, равную среднему логарифму функции распределения, взятой со знаком минус. Максимальное значение этой величины, которую Больцман называет «мерой распределения», при условии постоянства числа молекул и их общей кинетической энергии определяет наиболее вероятное распределение. Величину, которую Больцман обозначал через Е и ?, в дальнейшем стали обозначать Н, и она оказалась пропорциональной энтропии. Закон возрастания энтропии у Больцмана получает простую интерпретацию: «Система стремится к наиболее вероятному состоянию». Второе начало потеряло характер абсолютного закона природы и стало статистическим законом. В природе возможны процессы, происходящие в направлении убывания энтропии, и это, по мнению Больцмана, избавляет Вселенную от тепловой смерти. Для космоса в целом тепловой смерти нет. Взгляды и выводы Больцмана подвергались ожесточенной критике. Но вместе с тем они воспринимались и развивались другими исследователями: Максвеллом, Лоренцем, Планком. Планк дал простой вывод и простое точное выражение соотношения между энтропией и вероятностью. В обозначениях Планка оно имеет вид: S = k lnW, где S - энтропия, W - вероятность, k -постоянная, равная R/N, которую Планк назвал в честь Больцмана постоянной Больцмана. Из соотношения Планка исчезла неопределенная аддитивная константа, фигурирующая у Больцмана, и это соответствует тепловой теореме Нернста. формула соотношения между энтропией и вероятностью, данная Планком, фигурирует сегодня во всех руководства и монографиях как соотношение Больцмана. В 1912 г., читая лекции по статистическим теориям термодинамики в Париже, Лоренц говорил об успехах кинетической теории газов. Он указывал, как бы подводя итоги многолетней борьбы сторонников феноменологического описания с приверженцами атомистики: «Теперь нельзя сомневаться в их существовании после того, как «реальность молекул» стала фактом, почти что «наблюдаемым» непосредственно; молекулы существуют для нас совершенно так Же, как и многие другие предметы, непосредственно нами не видимые, но в существовании которых наш ум вовсе не сомневается». Далее Лоренц продолжал: «Основываясь на этих блестящих результатах, можно поставить вопрос: нельзя ли найти закон Карно — Клаузиуса при помощи молекулярных теорий, понимая, конечно, последние в очень широком смысле, так как общности результата должна каким-либо образом соответствовать общность предпосылок? Австрийскому физику Больцману принадлежит честь первого успешного подхода к этой задаче и установление связи между понятием вероятности, определенным образом понимаемой, и термодинамическими функциями, в частности энтропией. Рядом с ним нужно считать одним из основателей этой новой ветви теоретической физики — статистической термодинамики — Уилларда Гиббса. Далее следует упомянуть работы Пуанкаре, Планка и Эйнштейна. Общий результат, который можно считать окончательно установленным, это существование связи между энтропией некоторого состояния и вероятностью этого состояния». К именам, упомянутым Лоренцем, следует добавить имена П.Эренфеста и Т. А. Афанасьевой-Эренфест, которым принадлежит ряд работ по статистической термодинамике, и в частности фундаментальная обзорная статья о принципиальных основах статистического понимания, опубликованная в «Математической энциклопедии» в 1911 г. Все эти работы относятся к более позднему времени. Больцман же мог прочитать и оценить лишь книгу Гиббса «Основные принципы статистической механики», вышедшую в 1902 г. Он пришел также к пониманию идей Планка, как об этом писал сам Планк в своей автобиографии. Но все это происходило уже в XX в., когда физика переходила на новые пути, переживая мучительный кризис старого, «классического» понимания природы. В период жизни Больцмана был один физик, разрабатывавший проблемы, которыми занимался и Больцман, и внимательно следивший за его работами. Это был сын знаменитого русского хирурга Н.И.Пирогова Н. Н. Пирогов (1843—1891). В ряде работ, публиковавшихся в Журнале русского физико-химического общества за 1885-1890 гг., Пирогов рассматривал проблемы кинетической теории газов и статистической термодинамики. В них он не только защитил результаты Болыдмана, но и уточнил и развил и-х, сформулировав ряд важных идей, найденных статистической физикой позже. К сожалению, работы Пирогова, публиковавшиеся на русском языке, остались малоизвестными и не оказали своевременного влияния на развитие статистической термодинамики. Советские историки физики «открыли» Н. Н. Пирогова лишь в конце сороковых годов XX в..( См.: Спасский Б. И. Н. Н Пирогов.—В кн.: Развитие физики в России.— М.: Просвещение, 1970, с. 300-308. ) Остановимся в заключение на развитии представлений о самом атоме. Максвелл, Клаузиус, Больцман, Гиббс, развивая физическую атомистику, искали законы, управляющие поведением коллектива атомов и молекул, делая по возможности простые гипотезы о строении самих атомов. В XIX в. единственным средством наблюдать взаимодействия атомов и определять их индивидуальные особенности были химические реакции. Именно в недрах химической атомистики родилась первая гипотеза о строении всех атомов из атомов водорода (Проут, 1815). Химия выработала учение об элементе, определила атомные веса различных атомов, установила характерные особенности различных элементов. В 1859 г. было сделано важное открытие в оптике, физик Густав Кирхгоф (1824—1887) и химик Роберт Бунзен (1811—1899) открыли спектральный анализ, давший в руки химикам новое мощное средство исследования. Отметим, что это открытие было сделано в Гейдельбергской физической лаборатории сначала с флинт-призмой, отшлифованной самим фраунгофером, а затем со спектральным аппаратом с четырьмя фраунгоферовыми призмами, сконструированными Кирхгофом совместно с Бунзеном. Сами Кирхгоф и Бунзен методом спектрального анализа обнаружили элементы цезий (1860) и рубидий (1861). В 1861 г Крукс открыл спектроскопическим путем таллий. Через два года Райх и Рихтер обнаружили индий. Чрезвычайно интересна история открытия гелия. Кирхгофу впервые удалось раскрыть загадку фраунгоферовых линий и показать, что они получаются в результате поглощения лучей, испускаемых Солнцем, элементами, входящими в состав солнечной атмосферы. Так было доказано присутствие на Солнце ряда химических элементов. При наблюдении во время затмения соответствующие линии ярко вспыхивают в спектре Солнца. Наблюдая в 1868 г полное солнечное затмение, французский астроном Жан сен и английский астроном Локьер независимо друг от друга открыли в спектре Солнца яркую желтую линию, не принадлежащую ни одному из известных на Земле элементов. Локьер предположил, что эта линия испускается элементом, встречающимся только на Солнце, который он предложил поэтому назвать гелий (от греческого «гелиос» — Солнце) В 1895 г. английский химик Рамзей, исследуя спектроскопически газы, выделяющиеся при обработке кислотой минерала клевеита, нашел желтую линию гелия, который он в том же году выделил химически из газовой смеси. В 1869 г. было известно 63 хими ческих элемента. В этом же году Д.И.Менделеев открыл фундаментальный закон распределения элементов в систему, которую он назвал периодической системой химических элементов. Д.И.Менделеев родился 8 февраля 1834 г. в семье директора Тобольской гимназии. Д.И.Менделеев учился на физико-математическом факультете Петербургского педагогического института. Среди его учителей были известный математик М. В. Остро градский, физик Э.Х. Ленц, «отец русских химиков» А. А. Воскресенский. В этой обстановке научное дарование Менделеева развивалось быстро — и уже студентом он выполнил первую работу о химическом составе минералов ортита и пироксена. Институт он окончил с золотой медалью в 1855 г. и по состоянию здоровья вынужден был уехать в Крым, а затем в Одессу, где работал учителем гимназии. На юге здоровье Менделеева восстановилось, и в 1856 г. он вернулся в Петербург. Успешно сдав магистерские экзамены, он защитил диссертацию «Об удельных объемах». Затем он защитил диссертацию «О строении кремнеземистых соединений» на звание доцента Петербургского университета, в котором в 1857—1858 гг. читал курс теоретической и органической химии. В январе 1859 г. Менделеев был командирован за границу. Там он работал в лабораториях Бунзена, Кирхгофа и Коппа, а также в организованной им домашней лаборатории, в которой выполнил свое исследование по абсолютной температуре кипения. В 1860 г. Менделеев принял участие в съезде химиков в Карлсруэ, где Канниццаро, к которому примкнул и Менделеев, защищал теорию Авогадро — Жерара и новое определение атомных весов. С этого съезда химики стали правильно определять атомные веса элементов, что имело огромное значение для будущего великого открытия Менделеева. После двухлетнего пребывания за границей Менделеев вернулся в Петербург и приступил к чтению курса органической химии в университете. В 1867 г. А.А.Воскресенский уехал в Харьков попечителем учебного округа, и Менделеев занял освободившуюся кафедру неорганической химии Петербургского университета. При подготовке к чтению лекций университетского курса химии Менделеев рассуждал о связи между химическими элементами и составил их картотеку, раскладывая карточки «наподобие пасьянса». Он обратил внимание на периодичность в расположении атомных весов и повторяемости свойств элементов. 17 февраля 1869 г. Д. И. Менделеев составил карточку «Опыт системы элементов», которую и разослал некоторым химикам. Сообщение Д.И.Менделеева Русскому химическому обществу «Соотношение химических свойств с атомным весом элементов» сделал 6 марта (ст. стиля) 1869 г. Н.А.Меншуткин. В этом сообщении Менделеев излагал историю вопроса и причины, побудившие его им заняться. «Предприняв составление руководства к химии, названного «Основы химии», — писал Менделеев, — я должен был остановиться на какой-нибудь системе простых тел, чтобы в распределении их не руководствоваться случайными, как бы инстинктивными, побуждениями, а каким-либо точным началом». Указав, что со времен Жерара и Канниццаро уж нет сомнения в значении атомных весов элементов, «как это было несколько лет тому назад, когда атомный вес столь часто смешивался с эквивалентом и определялся на основании разнородных часто противоположных начал», Менделеев пишет, что он «старался основать систему по величине атомного веса элементов». Приведя результаты предпринятых им проб, которые показали, что между естественными свойствами элементов и величиной атомного веса существует некоторое точное отношение, Менделеев заключает: «Все сличения, сделанные мною в этом направлении, приводят меня к тому заключению, что величина атомного веса определяет природу элемента настолько же, насколько вес частицы определяет свойства и многие реакции сложного тела. Если это убеждение подтвердится дальнейшим применением выставленного начала, то мы приблизимся к эпохе понимания существенного различия и причины сходства элементарных тел». Далее Менделеев пишет: «Отныне, мне кажется, приобретается еще новый интерес в определении атомных весов, в открытии новых простых тел и в отыскании новых между ними аналогий». Так, уже в первом наброске системы, которую сам Менделеев не считал «совершенно законченной», он ясно видел, что открытый им закон приближает эпоху «понимания существенного различия и причины сходства элементарных тел» и что он может служить путеводным началом в открытии новых, еще неизвестных элементов. Менделеев в этом сообщении со всей определенностью писал: «Должно ожидать открытия еще многих неизвестных простых тел, например сходных с А1 и Si элементов с паем 65—75». В качестве первого вывода из своего исследования Менделеев записал: «Элементы, расположенные по величине их атомного веса, представляют явственную периодичность их свойств». Такова первая формулировка периодического закона, сыгравшего фундаментальную роль в истории атомной и ядерной физики. Менделеев продолжал работать над развитием и укреплением своего закона. 3 декабря 1870 г. он выступил в заседании Русского химического общества с сообщением «Естественная система элементов и ее применение к указанию свойств некоторых элементов». Он предсказал существование экабора, открытого шведским химиком Ниль-соном в 1879 г., названного скандием, экаалюминия, открытого французским химиком Лекок де Буабодраном под названием талий в 1875 г., и экакремния, открытого в 1886 г. немецким химиком Винклером под названием германий. Открытие периодического закона и предсказание на его основе новых элементов было высоко оценено Энгельсом, которьй назвал открытие Менделеева научным подвигом и сравнил его с предсказанием Леверье планеты Нептун. Это была очень высокая оценка— закон Менделеева оказался по своей точности и силе сравнимым с законами небесной механики. Эта оценка оправдалась и в дальнейшей истории закона: со времени его открытия было найдено свыше сорока новых элементов с самыми различными свойствами, и все они оказались включенными в систему Менделеева, а при открытии трансурановых элементов она служила руководящей нитью. Американские ученые во главе с Сиборгом, открыв в 1955 г. элемент № 101, назвали его менделевий «в знак признания пионерской роли великого русского химика Дмитрия Менделеева, который первым использовал периодическую систему для предсказания химических свойств еще не открытых элементов — принцип, который послужил ключом для открытия последних, или трансурановых элементов». Великий автор периодического закона отличался необычайной разносторонностью и широтой научной и общественной деятельности. Он был профессором Петербургского университета, в котором совместно с А. М. Бутлеровым и Н. А. Меншуткиным провел всю подготовительную работу по созданию новой химической лаборатории, которая была построена в 1891—1894 гг., когда А.И.Менделеева уже не было в университете. Он был вынужден уйти из университета в начале 1890 г. в знак протеста против действий министерства народного просвещения в связи со студенческими волнениями. В 1893 г А И Менделеев был назначен хранителем Палаты мер и весов, которая под его руководством превратилась в первоклассное научно-метрологическое учреждение — Главную палату мер и весов, ныне Всесоюзный научно-исследовательский институт метрологии и стандартизации (ВНИИМС). Д. И.Менделеева глубоко интересовало развитие промышленности и экономики России. Этому он посвятил немало трудов, активно участвуя в различных правительственных комиссиях, в том числе и по выработке таможенного тарифа. Нефтяное дело, металлургия, заводское дело, земледелие, промышленное развитие России, ее народонаселение—все интересовало ученого, везде он оставил свой неизгладимый след. Кипучая, разносторонняя деятельность Дмитрия Ивановича Менделеева оборвалась в 1907 г. 20 января 1907 г. он скончался в Петербурге от воспаления легких. С открытием спектрального анализа и периодического закона химических элементов стало ясно, что атом представляет сложную структуру с внутренними движениями его составных частей, порождающих характерные спектры. Но прежде чем приступить к изучению этой структуры, физике предстояло сделать новый шаг в развитии электромагнитной теории. Этот шаг был сделан Максвеллом. Возникновение и развитие теории электромагнитного поля Гипотеза поперечных световых волн Френеля поставила перед физикой ряд трудных проблем, касающихся природы эфира, т. е. той гипотетической среды, в которой распространяются световые колебания. Перед этими проблемами отступили на задний план и вопросы, касающиеся природы материальных частиц, испускающих световые волны, и задача отыскания механизма излучения в атомах и молекулах. Нужно было ответить на такие вопросы: в каком направлении совершаются колебания в линейно поляризованной волне? Почему нет продольных световых волн и какими свойствами должен обладать эфир, чтобы допускать только поперечные волны? И наконец, как ведет себя эфир по отношению к телам, движущимся через него? В послефренелевской оптике поискам ответов на эти вопросы было уделено значительное внимание. При ответе на первый вопрос было сделано две гипотезы: гипотеза Френеля и гипотеза Франца Неймана (1798—1895). Согласно гипотезе Френеля, световые колебания в линейно поляризованной волне происходят в направлении, перпендикулярном направлению плоскости поляризации. При этом эфир в весомых телах и свободный эфир отличаются своей плотностью, упругость же его остается неизменной. По гипотезе Неймана, колебания эфира совершаются в плоскости поляризации, эфир в весомых телах и свободный эфир различаются упругостью, а не плотностью. Для объяснения поперечности световых волн предлагались различные гипотезы: гипотеза абсолютно несжимаемого эфира, эфира, подобного сапожному вару, — твердому для быстрых изменений и текучему для медленных изменений, эфира как среды, наполненной гироскопами, и т. д. и т. п. По отношению к движущимся телам эфир рассматривался как неподвижная среда, как среда, частично увлекаемая телами, как среда, полностью увлекаемая. Все эти странные, противоречивые гипотезы отнимали у физиков немало сил, и все же ученые даже не ставили такого вопроса: а не бесплодны ли эти попытки? Существует ли вообще эфир? Существование эфира казалось несомненным после крушения корпускулярной теории света. Должна же быть среда, в которой распространяются световые колебания. «Явления света после неудачной «теории истечения» объясняются как колебания малейших частиц светящихся тел — колебания, которые передаются волнами эфира». Такими словами начинал раздел «физическая оптика» своего учебника «Введение в акустику и оптику» А. Г. Столетов. И это была общепринятая точка зрения. Столетов далее в нескольких пунктах обосновывает «необходимость допустить эту особую среду», т. е. эфир. Он уже знает об электромагнитной теории света, знает, что «световые волны суть поперечные волны «электрических колебаний» эфира, и хотя для него еще неясно, в чем состоит механизм этих колебаний, тем не менее он не сомневается в том, что носителем этих колебаний служит эфир. Лекции по акустике и оптике Столетов читал в 1880—1881 гг. «Введение в акустику и оптику» вышло в 1895 г. В 1902 г. вышла вторая часть «Курса физики» Н.А.Умова. В ней раздел, посвященный оптике, начинался словами: «Еще сравнительно недавно тонкая невесомая материя, проникающая тела и наполняющая все пространство, называемая эфиром, считалась местом исключительно одних световых явлений. В настоящее время мы рассматриваем свет только как частный случай явлений, возможных в эфире». За год до выхода в свет «Введения » Столетова, в 1894 г., был издан на немецком языке курс электричества П. Друде(1863—1906), носящий заглавие «физика эфира на электромагнитной основе». В 1901—1902 гг. Г. А.Лоренц читал в Лейденском университете курс лекций «Теория и модели эфира». Они были изданы на голландском языке в 1922 г., в английском переводе в 1927 г. и на русском языке в 1936 г., т. е. тогда, когда эфир был давно уже похоронен теорией относительности. Лоренц в заключительных словах своих лекций осторожно писал: «В последнее время механическое объяснение происходящих в эфире процессов все более отступает на задний план». Однако он полагал, что механические аналогии «все же сохраняют некоторое значение» «Они,— писал Лоренц,— помогают нам думать о явлениях и могут явиться источником идей для новых исследований». Эта надежда Лоренца была опрокинута развитием современной теоретической физики, выбросившей за борт наглядные модели и заменившей их математическим описанием. Парадоксальным является тот исторический факт, что этот процесс перехода к математическому описанию начал Максвелл, закладывавший основы своей электромагнитной теории, разрабатывая конкретные механические модели процессов в эфире. Обсуждая эти модели, Максвелл пришел к установлению уравнений, отражающих немеханические процессы электромагнитных явлений. Подводя в «Трактате по электричеству и магнетизму» итоги своих многолетних исследований по теории электричества и магнетизма, Максвелл констатирует, что «внутренние взаимосвязи различных отраслей подлежащей нашему изучению науки значительно более многочисленны и сложны, чем любой до сих пор разработанной научной дисциплины», в том числе, очевидно, и механики. Более того, Максвелл пишет, что законы науки об электричестве, «по-видимому, указывают на особую ее важность как науки, помогающей объяснить природу». Значит, наряду с механикой теория электричества, по Максвеллу, является фундаментальной наукой, «помогающей объяснить природу». «Исходя из этого, — говорит Максвелл, — мне представляется, что изучение электромагнетизма во всех его проявлениях как средство движения науки вперед всегда приобретает особую важность». Со времени гениальных открытий фарадея широко продвинулось дело технических приложений электричества. К моменту создания «Трактата» получил широкое распространение электромагнитный телеграф, появились линии дальней связи: трансатлантический кабель, связавший Европу и Америку (1866), индоевропейский телеграф, связавший Лондон и Калькутту (1869), линия связи Европы с Южной Америкой (1872). Появились и первые генераторы электрического тока: Кромвель и Варли (1866), Сименс (1867), Уитстон (1867), Грамм (1870—1871), атакже электродвигатели, начиная с двигателя русского академика Бориса Семеновича Якоби (1834) и кончая двигателем с кольцевым якорем Пачинотти (1860). Наступала эпоха электротехники. Но Максвелл имеет в виду не только и не столько быстрый прогресс электротехники. Электромагнитные процессы все глубже проникали в науку: в физику и химию. Наступала эпоха электромагнитной картины мира, сменившей механическую. Максвелл ясно видел фундаментальное значение электромагнитных законов, осуществив грандиозный синтез оптики и электричества. Именно ему удалось свести оптику к электромагнетизму, создав электромагнитную теорию света и проложив тем самым новые пути не только в теоретической физике, но и в технике, подготовив почву для радиотехники. Джемс Клерк Максвелл принадлежал к знатному шотландскому роду. Его отец Джон Клерк, принявший фамилию Максвелл, был человеком с разносторонними культурными интересами, путешественник, изобретатель, ученый. 13 июня 1831 г. в Эдинбурге у Максвеллов родился сын Джемс, будущий великий физик. Он рос прирожденным естествоиспытателем. Отец поощрял любознательность сына, сам познакомил его с астрономией, учил наблюдать небесные светила в зрительную трубу. Он хотел готовить сына в университет дома, но переменил намерение и отдал его в Эдинбургскую академию, среднее учебное заведение типа классической гимназии, когда Максвеллу было 10 лет. До пятого класса Джемс учился без особого интереса. Лишь с пятого класса он увлекся геометрией, мастерил модели геометрических тел, придумывал свои методы решения задач. Еще будучи пятнадцатилетним учеником, он представляет в Эдинбургское Королевское общество исследование об овальных кривых. Этой юношеской статьей 1846 г. открывается двухтомное собрание научных статей Максвелла. В 1847 г. Максвелл поступил в Эдинбургский университет. К этому времени его научные интересы определились, он увлекся физикой. В 1850 г. он сделал в Эдинбургском Королевском обществе доклад о равновесии упругих тел, в котором, между прочим, доказал известную в теории упругости и сопротивлении материалов «теорему Максвелла». В этом же году Максвелл переводится в Кембриджский университет, в знаменитый Тринити-колледж, воспитавший для человечества Ньютона и многих других известных физиков. В 1854 г. Максвелл вторым выдерживает выпускной экзамен. Он пишет своему старшему другу Вильяму Томсону письмо, в котором сообщает, что, «вступив в ужасное сословие бакалавров», решил «вернуться к физике» и прежде всего «атаковать электричество». Он размышляет над кривизной поверхностей, цветным зрением и «Экспериментальными исследованиями Фарадея». Уже в 1855 г. он посылает в Эдинбургское Королевское общество доклад «Опыты по цвету», конструирует цветовой волчок, разрабатывает теорию цветного зрения. В этом же году он начал работать над мемуаром «О фарадеевых силовых линиях» (1855—1856), первую часть которого он доложил Кембриджскому философскому обществу в 1855 г. В 1856 г. умирает отец Максвелла, бывший ему не только отцом, но и близким другом. В этом же году Максвелл получает профессуру в Абердинском университете в Шотландии. Новая должность и заботы о наследственном имении отнимали много времени. Тем не менее Максвелл интенсивно работает в науке. В 1857 г. он посылает фарадею свой мемуар «О фарадеевских силовых линиях», очень тронувший фарадея. «Ваша работа приятна мне и оказывает мне большую поддержку»,—писал он Максвеллу, Фарадей не ошибся: Максвелл оказал огромную поддержку его идеям, он достойно завершил дело фарадея. Эйнштейн сравнивает имена Галилея и Ньютона в механике с именами фарадея и Максвелла в науке об электричестве. Действительно, аналогия здесь вполне уместна. Галилей положил начало механике, Ньютон ее завершил. Оба они отправлялись от системы Коперника, ища ее физическое обоснование, которое в конце концов и было найдено Ньютоном. Фарадей по-новому подошел к изучению электричества и магнитных явлений, указывая на роль среды и вводя концепцию поля, описываемого им с помощью силовых линий. Максвелл придал идеям математическую завершенность, ввел точный термин «электромагнитное поле», которого еще не было у фарадея, сформулировал математические законы этого поля. Галилей и Ньютон заложили основы механической картины мира, фарадей и Максвелл—основы электромагнитной картины мира. Электромагнитную теорию Максвелл развивает в работах «О физических линиях силы» (1861—1862) и «Динамическая теория поля» (1864—1865). Эти работы он пиеал уже не в Абердине, а в Лондоне, где получил профессуру в Кинг-колледже. Здесь Максвелл встретился и с фарадеем, который был уже стар и болен. Максвелл, получив данные, подтверждающие электромагнитную природу света, послал их фарадею. Максвелл писал: «Электромагнитная теория света, предложенная им (фарадеем) в «Мыслях о лучевых вибрациях» (Phil. Mag., май 1846) или «Экспериментальных исследованиях» (Ехр. Rec., p. 447), - это по существу то же, что я начал развивать в этой статье («Динамическая теория поля» —Phil. Mag., 1865), за исключением того, что в 1846 г. не было данных для вычисления скорости распространения. Дж.К.М.». Максвелл признавал приоритет Фарадея в этом открытии. Максвелл не мог знать о запечатанном письме фарадея 1832 г. и ссылался на его статью, опубликованную в 1846 г. Но он со всей определенностью утверждал, что фарадей уже высказал то, что он дал в своей «Динамической теории поля», за исключением количественных данных о совпадении скорости распространения света с постоянным отношением электромагнитной и электростатической единиц заряда и тока. В 1865 г., когда появилась «Динамическая теория поля», с Максвеллом произошел несчастный случай во время верховой езды. Он оставляет профессуру в Лондоне и уезжает в свое имение Гленлэр, где продолжает статистические исследования, начатые им еще в 1859 г. В 1871 г. произошло важное событие. На средства потомка известного ученого XVIII в. Генри Кавендиша— герцога Кавендиша была учреждена кафедра экспериментальной физики в Кембриджском университете и начата постройка будущей знаменитой лаборатории Кавендиша. Максвелл был приглашен первым профессором Кавендиша. 8 октября 1871 г.онпрочитал свою инавгуральную лекцию о функциях экспериментальной работы в университетском образовании. Лекция оказалась программой всей будущей деятельности лаборатории в обучении экспериментальной физике. В этой деятельности Максвелл видит требование времени. «Мы должны начать в лекционном зале с курса лекций в какой-нибудь отрасли физики, пользуясь опытами как иллюстрацией, и закончить в лаборатории рядом исследовательских опытов». Максвелл высказывает важные мысли о назначении преподавателя. Главное для преподавателя — это сконцентрировать внимание студента на проблеме. Полемизируя с противниками экспериментального обучения, Максвелл заявляет, что если человек увлекается проблемой, вкладывает всю душу в разрешение ее, если он понял главную пользу математики в применении ее для объяснения природы, то не будет нанесен ущерб основной специальности, не смутят экспериментальные знания веру в формулы учебников, студент не будет чрезмерно утомляться. Максвелл начал свою деятельность в Кембридже с чтения лекций по теплоте. Много времени он отдавал вопросам строительства и организации лаборатории. Он изучал опыт создания лабораторий за границей и в своей стране, посетил лабораторию Томсона, Кларендонскую лабораторию. Кларендонская лаборатория послужила в значительной мере образцом для Кембриджской. 16 июня 1874 г. произошло открытие лаборатории. Лаборатория представляла собой основательное трехэтажное здание. В нижнем этаже были расположены комнаты для исследований по магнетизму, маятникам, теплоте. Здесь помещались кладовые, кухня, гостиная. На втором этаже — большая лаборатория, комната и лаборатория профессора, лекционная и комната для аппаратуры. На верхнем этаже были расположены лаборатория акустики, комнаты для вычислений и графических построений, лучистой теплоты, оптики, электричества и темная комната для фотографических работ. Все столы лаборатории покоились на балках, независимых от пола, что позволяло производить очень тонкие эксперименты. На крыше лаборатории был укреплен металлический шест. Все аудитории присоединялись к нему, так что в любой момент можно было измерить потенциал атмосферно-о электричества. Подъемные двери в полах лаборатории делали возможным тянуть провода между этажами, подвесить маятник Фуко и т. п. Конечно, во всех лабораториях были газ, вода, свет. Спустя три года после открытия лаборатории Максвелл писал, что она включает все «инструменты, требуемые настоящим состоянием науки». Список этих приборов был опубликован. По поводу этого списка Дж. Дж. Томсон говорил в 1936 г.: «Это поразительный пример различия приборов, которые f огда считались совершенными, с теми, какие имеются сейчас». Кавендишская лаборатория, ставшая впоследствии крупным центром физической науки, многим обязана своему первому профессору. У Максвелла была трудная задача—создание новой кафедры экспериментальной физики. Новое всегда с трудом пробивает себе дорогу. Наставники студентов последних курсов отговаривали их идти в лабораторию. Этим объясняется то, что на первых порах в лабораторию приходило мало людей. Сюда вначале пришли те, кто сдал математический грипос и желал получить навыки практической работы (В.Хик, Г. Кристал, С. Саундер, Д. Гордон, А. Шустер). Так, Георг Кристал (1851-1911), позднее профессор математики Эдинбургского университета, проверял справедливость закона Ома (эксперимент, подобранный ему Максвеллом). Необходимость этой проверки возникла оттого, что были исследования, которые бросали тень сомнения на справедливость этого закона. Максвелл писал Кэмпбеллу, что Кристал «...непрерывно работал с октября, проверяя закон Ома, и Ом вышел из испытаний с триумфом». Так же Кристал и С. Саундер в отчете Британской Ассоциации докладывали о результатах сравнения единиц сопротивления с единицами Британской Ассоциации—трудных исследования х, которые позднее продолжили Глазеб-рук и Флеминг. Позднее, в рэлеевское время, эти исследования распространились на всю область электрических измерений и сделали Кавендишскую лабораторию центром по установлению стандартов электрических единиц. Вообще все работающие у Максвелла, прежде чем приступить к оригинальным исследованиям, проходили небольшой общий практикум, изучали приборы, измеряли время, учились делать отсчеты и др., т. е. Максвелл закладывал основы будущего общего практикума лаборатории. Трудно переоценить значение деятельности Максвелла для будущего развития Кавендишской лаборатории. Вильям Томсон в 1882 г. писал: «Влияние Максвелла в Кембридже имело несомненный большой эффект в направлении математического обучения в более плодотворные каналы, чем те, в которых они текли многие годы. Его опубликованные научные статьи и книги, его работа как экзаменатора в Кембридже, его профессорские лекции — все содействовало этому эффекту. Но выше всего его работа в планировании и устройстве Кавендишской лаборатории. Здесь, в самом деле, взлет физической науки в Кембридже в течение последних десяти лет, и это целиком обусловлено максвелловским влиянием». В должности кавендишского профессора Максвелл вел большую научную и педагогическую работу. В 1873 г. вышел его главный труд «Трактат по электричеству и магнетизму». Он начал писать популярное изложение своей теории «Электричество в элементарном изложении», но закончить его не успел. Будучи в должности кавендишского профессора, Максвелл извлек из архива неопубликованные работы Кавендиша, в том числе его работу, где он за несколько лет до Кулона открыл закон электрических взаимодействий. Максвелл повторил опыт Кавендиша с более точным электрометром и подтвердил закон обратной пропорциональности квадрату расстояния с высокой степенью точности. Мемуары Генри Кавендиша со своими комментариями Максвелл опубликовал в 1879 г. В этом же году 5 ноября Максвелл скончался от рака. Максвелл был разносторонним ученым: теоретиком, экспериментатором, техником. Но в истории физики его имя прежде всего ассоциируется с созданной им теорией электромагнитного поля, которая так и называется теорией Максвелла или максвелловской электродинамикой. Она вошла в историю науки наряду с такими фундаментальными обобщениями, как ньютоновская механика, релятивистская механика, квантовая механика, и знаменовала собой начало нового этапа в физике. В соответствии с законом развития науки, сформулированным Аристотелем, она поднимала познание природы на новую, высшую ступень и вместе с тем была более непонятной, абстрактной, чем предшествующие теории, «менее явной для нас», по выражению Аристотеля. Это обстоятельство обусловило сравнительно долгое неприятие теории Максвелла физиками, и только после опытов Герца началось ее признание. Она получила «права гражданства» в физике после опыта Майкельсона, после первых работ Лоренца по электронной теории. Таким образом, ее усвоение совпало с началом создания электронной и релятивистской физики. История созданной Максвеллом теории переплетается с историей этих областей физики, ведущих к ее современному состоянию. Максвелл начал разрабатывать свою теорию в 1854 г. 20 февраля этого года он в письме к своему старшему другу В.Томсону пишет о своем намерении «атаковать электричество». В письме из Кембриджа от 13 ноября 1854 г. он пишет, что ему, «новичку в электричестве», удалось разрешить «огромную массу сомнений», используя немного простых идей. «Я достаточно легко получил фундаментальные принципы электричества напряжения» (т. е. электростатики), — говорит он и сообщает Томсону, что ему очень помогла аналогия с теплопроводностью, найденная Томсоном. Далее Максвелл сообщает, что хотя он восхищался, читая труды Ампера, но хотел бы сам исследовать его воззрения «философски». Ему кажется, что метод магнитных силовых линий фарадея очень полезен для этой цели, однако другие предпочитают пользоваться понятием непосредственного притяжения элементов тока. Максвелл разрабатывает картину магнитных силовых линий, генерируемых током, говорит о магнитном поле, вводит соответствующие понятия и пишет математические уравнения. Мысли, высказанные Максвеллом в этом письме, были разработаны в первой его работе «О фарадеевских силовых линиях», написанной в Кембридже в 1855—1856 гг. Он ставит целью этой работы «показать, каким образом непосредственным применением идей и методов фарадея лучше всего могут быть выяснены взаимные отношения различных классов открытых им явлений». В работе «О фарадеевских силовых линиях» Максвелл строит гидродинамическую модель среды, передающей электрические и магнитные взаимодействия. Ему удается описать стационарные процессы с помощью наглядной картины движущейся жидкости. Заряды и магнитные полюса в этой картине представляют собой источники и стоки текущей жидкости. «Я старался, — писал Максвелл, — ...представить математические идеи в наглядной форме, пользуясь системами линий или поверхностей, а не употребляя только символы, которые и не особенно пригодны для изложения взглядов фарадея и не вполне соответствуют природе объясняемых явлений». Однако для описания индукционных процессов фарадеевского электротонического состояния модель оказалась непригодной, и Максвелл вынужден прибегнуть к математической символике. Он характеризует электротоническое состояние с помощью трех функций, которые называет электротоническими функциями или составляющими электротонического состояния. В современных обозначениях эта векторная функция соответствует вектору-потенциалу. Криволинейный интеграл этого вектора вдоль замкнутой линии Максвелл называет «полной электротонической интенсивностью вдоль замкнутой кривой». Для этой величины он находит первый закон электротонического состояния: «Полная электротоническая интенсивность вдоль границы элемента поверхности служит мерой количества магнитной индукции, проходящей через этот элемент, или, другими словами, мерой числа магнитных силовых линий, пронизывающих данный элемент». В современных обозначениях этот закон может быть выражен формулой: где A - компонента вектора потенциала в направлении элемента кривой dl, Bn ~ нормальная компонента вектора индукции В в направлении нормали к элементу поверхности dS. Далее Максвелл пишет «уравнение магнитной проводимости»: связывающее магнитную индукцию В с вектором напряженности магнитного поля Н. Третий закон связывает напряженность магнитного поля Н с силой создающего ее тока I. Максвелл формулирует его так: «Полная магнитная интенсивность вдоль линии, ограничивающей какую-нибудь часть поверхности, служит мерой количества электрического тока, протекающего через эту поверхность». В современных обозначениях это предложение описывается формулой , которая ныне называется первым уравнением Максвелла в интегральной форме. Она отражает экспериментальный факт, открытый Эрстедом: ток окружен магнитным полем. Четвертый закон — это закон Ома: Для характеристики силовых взаимодействий токов Максвелл вводит величину, называемую им магнитным потенциалом. Эта величина подчиняется пятому закону: «Полный электромагнитный потенциал замкнутого тока измеряется произведением количества тока на полную электротоническую интенсивность вдоль цепи, считаемую в направлении тока: ». Шестой закон Максвелла относится к электромагнитной индукции: «Электродвижущая сила, действующая на элемент проводника, измеряется производной по времени от электротонической интенсивности, независимо от того, обусловлена ли эта производная изменением величины или направления электротогмческого состояния». В современных обозначениях этот закон выражается формулой: представляющей собой второе уравнение Максвелла в интегральной форме. Заметим, что электродвижущей силой Максвелл называет циркуляцию вектора напряженности электрического поля. Максвелл обобщает закон индукции фарадея — Ленца— Неймана, считая, что изменение во времени магнитного потока (электротонического состояния) порождает вихревое электрическое поле, существующее независимо от того, есть ли замкнутые проводники, в которых это поле возбуждает ток, или нет. Обобщения же закона Эрстеда Максвелл пока не дает. формулировку шести законов Максвелл заканчивает следующими словами: «Я сделал попытку дать в этих шести законах математическое выражение той идеи, которая, по моему мнению, лежит в основе хода мыслей фарадея в его «Экспериментальных исследованиях». Это утверждение Максвелла совершенно справедливо, как справедливо и другое утверждение, что введение «математических функций для выражения фарадеевского электротонического состояния и для определения электродинамических потенциалов и электродвижущих сил» сделано им впервые. Следующий шаг в развитии теории электромагнитного поля Максвелл сделал в 1861—1862 гг., опубликовав ряд статей под общим заглавием «О физических силовых линиях». И здесь Максвелл прибегает к механической модели электромагнитного поля. Но эта модель значительно сложнее, чем картина поля скоростей движущейся жидкости, которую он разрабатывал в предыдущей работе. Максвелл разрабатывал эту модель, используя в полной мере свой талант механика и конструктора, и пришел к своим знаменитым уравнениям. «Максвелл,—писал Больцман, — нашел свои уравнения в результате стремления доказать при помощи механических моделей возможность объяснения электромагнитных явлений, исходя из концепции близко действия, и только эти модели впервые указали путь к тем экспериментам, которые окончательно и решительно установили факт близко-действия и в настоящее время образуют наиболее простой и наиболее достоверный фундамент найденных другим путем уравнений». Найти уравнения Максвелла нетрудно, но «вывести» их невозможно, так же как невозможно вывести законы Ньютона. Конечно, и уравнения Ньютона и уравнения Максвелла могут быть выведены из других принципов, которые приходится принимать без доказательства, но эти принципы, как и сами уравнения Максвелла или Ньютона, представляют собой обобщения опыта. «Теория Максвелла — это уравнения Максвелла»,— сказал Герц. В «физических линиях силы» Максвелл прежде всего обосновывает выражение силы, действующей на каждый элемент среды, в которой находятся заряды, токи, магниты. Максвелл мыслит среду заполненной молекулярными вихрями, силы, действующие в этой среде в одной и той же точке, зависят от направления, они носят, как мы теперь говорим, тензорный характер. Далее Максвелл записывает свои знаменитые уравнения. Новым по сравнению с работой о фарадеевских линиях силы здесь является четкое установление связи между изменениями магнитного поля и возникновением электродвижущей силы. Его уравнение (точнее, «триплет» уравнений для компонентов) определяет «отношения между изменениями состояния магнитного поля и электродвижущими силами, ими обусловленными». Другой важной новостью является введение понятий смещения и токов смещения. Смещение, по Максвеллу,— это характеристика состояний диэлектрика в электрическом поле. Полный поток смещения через замкнутую поверхность равен алгебраической сумме зарядов, находящихся внутри поверхности. «Это смещение, — пишет Максвелл,—не представляет собой настоящего тока потому, что, достигнув определенной величины, оно остается постоянным. Но это есть начало тока, и изменения смещения образуют токи в положительном или отрицательном направлении в зависимости от того, увеличивается смещение или уменьшается». Так вводится фундаментальное понятие тока смещения. Этот ток, так же как и ток проводимости, создает магнитное поле. Поэтому Максвелл обобщает то уравнение, которое ныне называется первым уравнением Максвелла, и вводит в первую часть ток смещения. В современных обозначениях это уравнение Максвелла имеет вид: Далее Максвелл считает поле носителем энергии, которая распространяется по всему объему. Энергия электрического поля выражается следующей формулой: И наконец, Максвелл находит, что в его упругой среде распространяются поперечные волны со скоростью света. Этот фундаментальный результат приводит его к важному выводу: «Скорость поперечных волновых колебаний в нашей гипотетической среде, вычисленная из электромагнитных опытов Кольрауша и Вебера, столь точно совпадает со скоростью света, вычисленной из оптических опытов физо, что мы едва ли можем отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений. Таким образом, в начале 60-х годов XIX в. Максвелл уже нашел основы своей теории электричества и магнетизма и сделал важный вывод о том, что свет представляет собой электромагнитное явление. Продолжая разработку теории, Маквелл в 1864—1865 гг. опубликовал свою «Динамическую теорию поля». В этой работе теория Максвелла принимает завершенный вид и новый объект научного исследования, введенный фараде-ем, — электромагнитное поле — получает точное определение. «Та теория, которую я предлагаю, — пишет Максвелл, — может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или магнитные тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производятся наблюдаемые электромагнитные явления. Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии». Таково первое в истории физики определение электромагнитного поля, фарадей не употребляет термина «поле», он говорит о реальном существовании физических линий силы. Только со времени Максвелла в физике появляется понятие поля, которое служит носителем электромагнитной энергии. Для описания поля Максвелл вводит скалярные и векторые функции координат. Векторы он обозначает заглавными буквами немецкого готического шрифта, но в вычислениях оперирует с их компонентами. Векторные уравнения он расписывает в координатах, получая соответствующие тройки («триплеты») уравнений. В «Трактате по электричеству и магнетизму» он дает сводку главных величин, используемых в его электромагнитной теории. Термины, обозначения, самый смысл, вкладываемый Максвеллом в содержание вводимых понятий нередко значительно отличаются от современных. Так, величина «электромагнитный момент», или «электромагнитное количество движения» в точке, играющая в концепции Максвелла фундаментальную роль, в современной физике, является вспомогательной величиной, вектор — потенциалом А. Правда, в квантовой теории она вновь получила фундаментальное значение, но экспериментальная физика, радиотехника и электротехника придают ей чисто формальное значение. В теории Максвелла эта величина связана с магнитным потоком. Циркуляция вектора-потенциала по замкнутому контуру равна магнитному потоку через поверхность, охватываемую контуром. Магнитный поток обладает инерционными свойствами, и электродвижущая сила индукции по правилу Ленца пропорциональна скорости изменения магнитного потока, взятого с обратным знаком. Отсюда напряженность индукционного электрического поля: Максвелл считает это выражение аналогичным выражению для силы инерции в механике: где - механический импульс, или количество движения. Эта аналогия объясняет термин, введенный Максвеллом для вектор-потенциала. Сами уравнения электромагнитного поля в теории Максвелла имеют вид, отличный от современного. В современной форме система уравнений Максвелла имеет следующий вид: Этими уравнениями вектор магнитной индукции B и вектор напряженности электрического поля Е выражаются через векторный потенциал А и скалярный потенциал V. Максвелл выписывает далее выражение пондеромоторной силы f, действующей со стороны поля с магнитной индукцией В на единицу объема проводника, обтекаемого током с плотностью j: К этому выражению он добавляет «уравнение намагничивания »: и «уравнение электрических токов» (ныне первое уравнение Максвелла): Связь между вектором смещения D и напряженностью электрического поля E у Максвелла выражается уравнением: Максвелл выписывает далее закон Ома в дифференциальной форме: Затем выписывает уравнение divD = р и уравнение где , а также пограничное условие: Такова система уравнений Максвелла. Важнейший вывод из этих уравнений заключается в существовании поперечных электромагнитных волн, распространяющихся в намагниченном диэлектрике со скоростью: где Этот вывод получен им в последнем разделе «Динамической теории поля», носящем название «Электромагнитная теория света». «...Наука об электромагнетизме, — пишет здесь Максвелл, — ведет к совершенно таким же заключениям, как и оптика в отношении направления возмущений, которые могут распространяться через поле; обе эти науки утверждают поперечность этих колебаний, и обе дают ту же самую скорость распространения». В эфире эта скорость с - скорость света (Максвелл обозначает ее V), в диэлектрике она меньше где Таким образом, показатель преломления n, по Максвеллу, определяется электрическими и магнитными свойствами среды. В немагнитном диэлектрике где Это знаменитое соотношение Максвелла. В «Трактате» Максвелл пишет: «По теории, согласно которой свет есть электромагнитное возмущение, распространяющееся в той же самой среде, через которую распространяются другие электромагнитные действия, V должно быть скоростью света, численное значение которой может быть определено различными методами. С другой стороны, v - число электростатических единиц в одной электромагнитной единице и методы определения этой величины были описаны в предыдущей главе. Они являются совершенно независимыми методами определения скорости света. Следовательно, совпадение или несовпадение величины У и v обеспечивает проверку электромагнитной теории света». Максвелл дает сводку определений V и v, из которой следует, что «скорость света и отношение единиц имеет тот же порядок величины». Хотя Максвелл не считает это совпадение достаточно точным, он надеется, что в дальнейших экспериментах соотношение между обеими величинами может быть определено более точно. Во всяком случае имеющиеся данные не опровергают теории. Но в отношении закона Максвелла дело обстояло хуже. Был один экспериментальный результат, полученный при определении диэлектрической проницаемости парафина. Она оказалась равной e = 1,975. С другой стороны, значения показателя преломления парафина для фраунгоферовых линий - A, D, H оказались равными п = 1,420 вместо Эта разница достаточно велика, и ее нельзя отнести за счет ошибки наблюдения. Максвелл считал ее указанием на необходимость значительного улучшения теории строения вещества, «прежде чем мы сможем выводить оптические свойства тел из их электрических свойств». Это очень тонкое и глубокое замечание полностью оправдалось в истории физики. Во времена Максвелла еще не была открыта длинноволновая область электромагнитного спектра и для нее, естественно, не были промерены значения показателя преломления. Однако в оптической области была уже обнаружена аномальная дисперсия, показавшая, что показатель преломления весьма сложным образом зависит от частоты. Требовались разносторонние экспериментальные и теоретические исследования, чтобы сказать со всей определенностью о справедливости закона Максвелла. Сам Максвелл был глубоко убежден в правильности своих выводов, и его не смущали отступления экспериментальных данных от теоретических значений. Он внимательно следил за исследованиями в этой области, хотя и предупреждал: «Мы едва можем надеяться даже на приблизительную проверку, если будем сравнивать результаты наших медленно протекающих электрических опытов со световыми колебаниями, совершающимися биллионы раз в секунду». Тем не менее он приветствовал результаты Больцмана, измерившего диэлектрические проницаемости газов и показавшего справедливость для ряда газов максвелловского соотношения n2 = е. Он включил результаты Больцмана в свой последний труд «Электричество в элементарном изложении», изданный посмертно. Сюда же включил и результаты русских физиков Н.Н.Шиллера (1848-1910) и П. А. Зилова (1850-1921). Н. Н. Шиллер в 1872—1874 гг. измерял диэлектрическую постоянную ряда веществ в переменных электрических полях с частотой порядка 10 Гц. Для ряда диэлектриков он нашел приблизительное подтверждение закона n2 = е, но для других, например для стекла, расхождение было весьма значительным. П. А. Зилов в 1876 г. измерил диэлектрические постоянные для некоторых жидкостей. Для терпентина он нашел: е = 2,21, e(1/2) = 1,49, n = 1,456. Зилов прекрасно понимал, что длина электрических волн «бесконечно велика сравнительно с длиной световых волн», и закон Максвелла он формулирует так: «Квадратный корень из диэлектрической постоянной изолятора равняется его показателю преломления для лучей бесконечно длинной волны». Н. Н. Шиллер и П. А. Зилов были учениками Столетова. Сам Столетов глубоко интересовался теорией Максвелла и предпринял измерение отношения единиц в целях подтверждения вывода Максвелла. В России теория Максвелла встретила сочувствие и понимание, и русские физики много способствовали ее успеху. В теории Максвелла энергия распределена в пространстве с объемной плотностью. Очевидно, что электромагнитная волна, распространяясь в пространстве, несет с собой энергию. Максвелл утверждал, что, падая на поглощающую поверхность, волна производит давление на эту поверхность, равное объемной плотности энергии. Этот вывод Максвелла встретил критику со стороны В.Томсона (Кельвина) и других физиков. Как мы увидим далее, русский физик П.Н.Лебедев доказал правоту Максвелла. Учение о движении энергии было разработано русским физиком Н.А.Умовым. Н. А. Умов родился 23 января 1846 г. в семье симбирского врача. По окончании в 1863 г. Первой московской гимназии УМОВ поступил в Московский университет, который окончил в 1867 г. кандидатом. В 1871 г. Умов защищает магистерскую диссертацию «Теория термомеханических явлений в твердых упругих телах» и избирается доцентом Новороссийского университета в Одессе. В 1874 г. он защищает докторскую диссертацию «Уравнения движения энергии в телах». Диспут был трудным. Идея движения энергии казалась неприемлемой даже таким физикам, как А. Г. Столетов. В 1875 г. Умов становится экстраординарным, а в 1880 г. ординарным профессором Новороссийского университета. В 1893 г. он переезжает в Москву в связи с избранием его профессором университета. Через три года он занимает кафедру физики, освободившуюся после смерти Столетова. Под руководством Умова проектируется и строится здание физического института университета. Умер Умов 15 января 1915 г. В своей работе «Уравнения движения энергии в телах» Умов рассматривает движение энергии в среде с равномерным распределением энергии по всему объему, так что каждый элемент объема среды «заключает в данный момент определенное количество энергии». Умов обозначает объемную плотность энергии через Э, а через lx, 1y, lz - «слагающие по прямоугольным осям координат х, у и z скорости, с которой энергия движется в рассматриваемой точке среды». Умов устанавливает далее дифференциальное уравнение, которому подчиняется изменение плотности энергии Э во времени: Так же как и Максвелл, Умов обозначает частные производные через Сегодня мы пишем наоборот: Таким образом, изменение энергии внутри объема определяется ее потоком через поверхность. Через каждую единицу поверхности в единицу времени течет количество энергии Эl„, равной нормальной составляющей вектора Э1 = =у. Этот вектор ныне называется вектором Умова. 17 декабря 1883 г. Рэлей представил Королевскому обществу сообщение Джона Пойнтинга (1852—1914) «О переносе энергии в электромагнитном поле». Это сообщение было прочитано Пойнтингом 10 января 1884 г. и опубликовано в трудах общества в 1885 г., т. е. спустя 11 лет после публикации Умова. Не зная этой публикации, появившейся в Одессе в 1874 г. отдельной брошюрой, Пойнтинг решает тот же вопрос применительно к случаю движения электромагнитной энергии. Исходя из максвелловского выражения для объемной плотности электромагнитной энергии, Пойнтинг находит теорему, которую формулирует следующим образом: «Изменение суммы заключенных внутри поверхности электрической и магнитной энергий в секунду вместе с теплом, развиваемым токами, равно величине, в которую каждый элемент поверхности вносит свою долю, зависящую от значений электрической и магнитной силы на этом элементе». Это означает, что «энергия течет... перпендикулярно к плоскости, содержащей линии электрической и магнитной сил, и что количество энергии, пересекающее единицу поверхности этой плоскости в секунду, равно произведению: электродвижущая силах магнитная силах синус угла между ними, деленному на 4я, в то время как направление потока определяется тремя величинами — электродвижущей силой, магнитной силой и потоком энергии, связанными в правовинтовую связку». В современных обозначениях вектор потока энергии Пойнтинга по модулю и направлению определяется выражением: В нашей литературе этот вектор называют вектором Умова—Пойнтинга. Говоря о достижениях теории близ-кодействия, к которым относится и теория Максвелла, не следует забывать, что эта теория не пользовалась поддержкой большинства ведущих физиков. Максвелл в предисловии к первому изданию своего «Трактата по электричеству и магнетизму», датированном 1 февраля 1873 г., писал, что метод фа-радея равноправен методу математиков, трактующих электричество в терминах действия на расстоянии. «Я нашел,— писал Максвелл, — что результаты обоих методов вообще совпадают, так что ими объясняются одни и те же явления и обоими методами выводятся одни и те же законы». Однако он подчеркивает, что плодотворные методы, найденные математиками, «могут быть выражены в терминах представлений, заимствованных у фарадея, много лучше, чем в их первоначальной форме». Такова, по мнению Максвелла, теория потенциала, если потенциал рассматривать как величину, удовлетворяющую дифференциальному уравнению в частных производных. Максвелл предпочитает и защищает метод фарадея. «Этот путь, хотя он и может показаться в некоторых частях менее определенным, находится, как я думаю, в более верном соответствии с нашими действительными познаниями как в том, что он утверждает, так и в том, что он оставляет нерешенным». Заканчивая свой трактат разбором теории дальнодействия, Максвелл указывает, что все они находились в оппозиции к концепции поля, были «против предположения о существовании среды, в которой распространяется свет». Но Максвелл утверждает, что концепция дальнодействия неизбежно сталкивается с вопросом: «Если что-то распространяется на расстояние от одной частицы к другой, то в каком оно будет состоянии, когда оно покинуло одну частицу и не достигло еще другой?». Максвелл считает, что единственно разумным ответом на этот вопрос является гипотеза промежуточной среды, передающей действие одной частицы на другую, гипотеза близко действия. Если принять эту гипотезу, то она, как думает Максвелл, «должна занять видное место в наших исследованиях, и мы должны попытаться составить себе мысленное представление о всех деталях этого действия». «И это было, — заканчивает Максвелл, — моей постоянной целью в этом трактате». Таким образом, уже в «Трактате» Максвелл констатирует наличие серьезной оппозиции среди сторонников дальнодействия новым идеям. Он ясно чувствует, что новая концепция поля означает поднятие нашего понимания электромагнитных явлений на новый высший уровень, и в этом он, безусловно, прав. Но этот новый уровень, вводя неясную, не ощутимую непосредственно нами концепцию поля, уводит нас дальше от обычных чувственных пред ставлений, от привычных понятий Повторилось еще раз указание Аристотеля, что познание идет к «более явному по природе», но «менее явному для нас». Потребовались новые результаты, чтобы теория Максвелла стала достоянием физики. Решающую роль в победе максвелловской теории сыграл немецкий физик Генрих Герц. Герц. Генрих Рудольф Герц родился 22 февраля 1857 г. в семье адвоката позже ставшего сенатором. В эпоху Гер ца в объединенной Германии интенсивно развивались промышленность, наука и техника. В Берлинском университете Гельмгольц создал мировую научную школу, под его руководством был выстроен в 1876 г. физический институт. ( О создании и устройстве физического института Гельмгольца см. в кн.: Лебединский А.В. и др. Гельмгольц.—М.: Наука 1966, с. 148-153. ) Тогда же Вернер Сименс (1816-1892) интенсивно работал в области электротехники сильных токов. Сименс был организатором крупнейших электротехнических фирм «Сименс и Гальске», «Сименс и Шункерт». Он был вместе с Гельмгольцем одним из инициаторов создания физико-технического института, высшего метрологического учреждения Германии. Друг и родственник Сименса, Гельмгольц был первым президентом этого института. В среду этих лидеров немецкой науки и техники вошел и Герц. По окончании в 1875 г. гимназии Герц учился сначала в Дрезденском, а потом в Мюнхенском высшем техническом училище. Но скоро он понял, что его призвание — наука, и перешел в Берлинский университет, где изучал физику под руководством Гельмгольца. Герц был любимым учеником Гельмгольца, и именно ему Гельмгольц поручил проверить экспериментально теоретические выводы Максвелла. Герц начал свои знаменитые опыты, будучи профессором Высшей технической школы в Карлсруэ, и заканчивал их в Бонне, где был профессором экспериментальной физики. Умер Герц 1 января 1894 г. Его учитель Гельмгольц, написавший некролог на своего ученика, скончался в том же году 8 сентября. Гельмгольц в своем некрологе вспоминает начало научного пути Герца, когда он предложил ему тему для студенческой работы из области электродинамики, «будучи уверен, что Герц заинтересуется этим вопросом и успешно его разрешит». Таким образом Гельмгольц ввел Герца в ту область, в которой ему впоследствии пришлось сделать фундаментальные открытия и обессмертить себя. Характеризуя состояние электродинамики в то время (лето 1879 г.), Гельмгольц писал: «...Область электродинамики превратилась в то время в бездорожную пустыню, факты, основанные на наблюдениях и следствиях из весьма сомнительных теорий, — все это было вперемешку соединено между собой». Заметим, что эта характеристика относилась к 1879 г. — году смерти Максвелла. Герц родился как ученый именно в этот год. Нелестная характеристика электродинамики конца 70-х — начала 80-х годов XIX в. дается и Энгельсом в 1882 г. Энгельс отмечает «вездесущность электричества», проявляющегося при изучении самых различных процессов природы, растущее его применение в промышленности и указывает, что, несмотря на это, «оно является именно той формой движения, насчет существа которой царит еще величайшая неясность». «В учении... об электричестве, — продолжает Энгельс, — мы имеем перед собой хаотическую груду старых, ненадежных экспериментов, не получивших ни окончательного подтверждения, ни окончательного опровержения, какое-то неуверенное блуждание во мраке, не связанные друг с другом исследования и опыты многих отдельных ученых, атакующих неизвестную область вразброд, подобно орде кочевых наездников»( Энгельс ф. Диалектика природы. — Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, с. 433-434. ). Хотя Энгельс выражается более резко, чем Гельмгольц, их характеристики в основном совпадают: «бездорожная пустыня», «блуждание во мраке». Но Гельмгольц ни слова не говорит о Максвелле, а Энгельс отмечает «решительный прогресс» эфирных теорий электричества и «один бесспорный успех», имея в виду экспериментальное подтверждение Больцманом закона Максвелла n2 = е. «Таким образом,— резюмирует Энгельс, — специально максвелловская эфирная теория была подтверждена экспериментально».(Энгельс ф. Диалектика природы. — Маркс К., Энгельс ф. Соч., 2-е изд., т. 20, с. 439. ) Но решающее подтверждение было еще впереди. Пока же молодому ученому в работах «Попытка определения верхней границы для кинетической энергии течения электричества» (1880), докторской диссертации «Об индукции во вращающихся телах» (март 1880), «Об отношении максвелловских электродинамических уравнений к противоположной электродинамике» (1884) приходилось пробираться по «бездорожной пустыне», нащупывая мосты между соперничающими теориями. В работе 1884 г. Герц показывает, что максвелловcкая электродинамика обладает преимуществами по отношению к обычной, но считает недоказанным, что она единственно возможная. В дальнейшем Герц, однако, остановился на компромиссной теории Гельмгольца. Гельмгольц взял у Максвелла и фара-дея признание роли среды в электромагнитных процессах, но в отличие от Максвелла считал, что действие незамкнутых токов должно быть отлично от действия замкнутых токов. Действие замкнутых токов выводится из обеих теорий одинаково, в то время как для незамкнутых токов, по Гельмгольцу, должны наблюдаться различные следствия из обеих теорий. «Для каждого, кто знал в то время действительное положение дел, —писал Гельмгольц,— было ясно, что полного понимания теории электромагнитных явлений можно будет достичь только путем точного исследования процессов, связанных с этими мгновенными незамкнутыми токами». Этот вопрос изучал в лаборатории Гельмгольца Н.Н.Шиллер, посвятивший этому исследованию свою докторскую диссертацию «Диэлектрические свойства - концов разомкнутых токов в диэлектриках» (1876). Шиллер не обнаружил различия между замкнутыми и незамкнутыми токами, как это и должно было быть по теории Максвелла. Но, видимо, Гельмгольц не удовлетворился этим и предложил Герцу вновь заняться проверкой теории Максвелла и взяться за решение задачи, поставленной в 1879 г. Берлинской Академией наук: «показать экспериментально наличие какой-нибудь связи между электродинамическими силами и диэлектрической поляризацией диэлектриков». Подсчеты Герца показали, что ожидаемый эффект даже при наиболее благоприятных условиях будет слишком мал, и он «отказался от разработки задачи». Однако с этих пор он не переставал думать о возможных путях ее решения и его внимание «было обострено в отношении всего, что связано с электрическими колебаниями». Действительно, при низких частотах эффект тока смещения, а именно в этом основное отличие теории Максвелла от теории дальнодействия, ничтожен, и Герц правильно уяснил, что для успеха решения задачи нужны высокочастотные электрические колебания. Что было известно об этих колебаниях? В 1842 г. американский физик Дж. Генри, повторяя опыты Савара 1826 г., установил, что разряд лейденской банки «не представляется... единичным переносом невесомого флюида с одной обкладки банки на другую» и что необходимо допустить «существование главного разряда в одном направлении, а затем несколько отраженных действий назад и вперед, каждое из которых является более слабым, чем предыдущее, продолжающихся до тех пор, пока не наступит равновесие». Гельмгольц в мемуаре «О сохранении силы» также констатирует, что разряд батареи лейденских банок следует представлять «не как простое движение электричества в одном направлении, а как движение его туда и обратно между обеими обкладками, как колебания, которые все более и более уменьшаются, пока вся их живая сила не уничтожается суммой сопротивлений». В.Томсон в 1853 г. исследовал разряд проводника заданной емкости через проводник данной формы и сопротивления. Применяя к процессу разряда закон сохранения энергии, он вывел уравнение разрядного процесса в следующем виде: где q - количество электричества на разряжаемом проводнике в данный момент времени t, C- емкость проводника, k - гальваническое сопротивление разрядника, А - «постоянная, которую можно назвать электродинамической емкостью разрядника» и которую мы сейчас называем коэффициентом самоиндукции или индуктивностью. Томсон, анализируя решение этого уравнения при различных корнях характеристического уравнения, находит, что когда величина имеет действительное значение (1/CA>4*(k/A)2), то решение показывает, «что главный проводник теряет свой заряд, заряжается меньшим количеством электричества обратного знака, снова разряжается, опять оказывается заряженным еще меньшим количеством электричества первоначального знака, и это явление повторяется бесконечное число раз, пока не установится равновесие». Циклическая частота этих затухающих колебаний: Таким образом, период колебаний можно представить формулой: При малых значениях сопротивления получаем известную формулу Томсона: Электромагнитные колебания были экспериментально исследованы В. феддерсеном (1832—1918), который рассматривал изображение искрового разряда лейденской банки во вращающемся зеркале, фотографируя эти изображения, Феддерсен установил, что «в электрической искре имеют место попеременно противоположные токи» и что время одного колебания «увеличивается в той мере, как возрастает корень квадратный из электризуемой поверхности», т. е. период колебаний пропорционален корню квадратному из емкости, как это и следует из формулы Томсона. Недаром Томсон, переиздавая в 1882 г. свою работу «О преходящих электрических токах», рассмотренную выше, снабдил ее примечанием, датированным 11 августа 1882 г.: «Теория колебательного электрического разряда, рассмотренная в этой статье 1853 г., приобрела вскоре интересную иллюстрацию в прекрасном фотографическом исследовании электрической искры, выполненной феддерсеном». Далее Томсон указывает, что его теория «была подвергнута очень важному и замечательно выполненному экспериментальному исследованию в лаборатории Гельмгольца в Берлине», ссылаясь на работу Н. Н. Шиллера 1874 г. «Некоторые экспериментальные исследования электрических колебаний». Томсон отмечает, что среди других «значительных результатов» этого исследования «были определены из измерений периодов наблюдаемых колебаний удельные индуктивные емкости (т. е. диэлектрические проницаемости) некоторых твердых изолирующих веществ». Таким образом, к началу исследований Герца электрические колебания были изучены и теоретически и экспериментально. Герц с его обостренным вниманием к этому вопросу, работая в высшей технической школе в Карлсруэ, нашел в физическом кабинете пару индукционных катушек, предназначавшихся для лекционных демонстраций. «Меня поразило, — писал он, — что для получения искр в одной обмотке не было необходимости разряжать большие батареи через другую и более того, что для этого достаточны небольшие лейденские банки и даже разряды небольшого индукционного аппарата, если только разряд пробивал искровой промежуток». Экспериментируя с этими катушками, Герц пришел к идее своего первого опыта; Экспериментальную установку и сами опыты Герц описал в опубликованной в 1887 г. статье «О весьма быстрых электрических колебаниях». Герц описывает здесь способ генерации колебаний, «приблизительно в сто раз быстрее наблюденных феддерсеном». «Период этих колебаний, — пишет Герц, — определяемый, конечно, лишь при помощи теории, измеряется стомиллионными долями секунды. Следовательно, в отношении продолжительности они занимают среднее место между звуковыми колебаниями весомых тел и световыми колебаниями эфира». Однако ни о каких электромагнитных волнах длиной порядка 3 м Герц в этой работе не говорит. Все, что он сделал, это сконструировал генератор и приемник электрических колебаний, изучая индукционное действие колебательного контура генератора на колебательный контур приемника при максимальном расстоянии между ними 3 м. Колебательный контур в окончательном опыте представлял собой проводники С и С1, находящиеся на расстоянии 3 м друг от друга, соединенные медной проволокой, в середине которой находился разрядник индукционной катушки. Приемник представлял собой прямоугольный контур со сторонами 80 и 120 см, с искровым промежутком в одной из коротких сторон. Индукционное действие генератора на приемник обнаруживалось слабой искоркой в этом промежутке. Рис. 43. Опыт Герца Затем Герц сделал приемный контур в виде двух шаров диаметром 10 см, соединенных медной проволокой, в середине которой был искровой промежуток. Описывая результаты опыта Герц заключал: «Я думаю, что здесь впервые было показано на опыте взаимодействие прямолинейных разомкнутых токов, имеющее такое большое значение для теории». В самом деле, как мы знаем, именно разомкнутые цепи позволили сделать выбор между конкурирующими теориями. Однако Герц ни в этой первой работе, ни в трех после дующих о максвелловских электромаг нитных волнах не говорит, он их еще не видит. Он говорит пока о «взаимодействии» проводников и рассчитывает это взаимодействие по теории дальнодействия. Проводники, с которыми здесь работает Герц, вошли в науку под назва нием вибратор и резонатор Герца Резонатором проводник называется по тому, что наиболее сильно возбуждаетcя колебаниями, резонирующими с его собственными колебаниями. В следующей работе «О влиянии ультрафиолетового света на электрический разряд», поступившей в «Протоколы Берлинской Академии наук» 9 июня 1887 г., Герц описывает важное явление, открытое им и получившее впоследствии название фотоэлектрического эффекта. Это замечательное открытие было сделано благодаря несовершенству герцевского метода детектирования колебаний: искры, возбуждаемые в приемнике, были настолько слабы, что Герц решил для облегчения наблюдения поместить приемник в темный футляр. Однако оказалось, что максимальная длина искры при этом значительно меньше, чем в открытом контуре. Удаляя последовательно стенки футляра, Герц заметил, что мешающее действие оказывает стенка, обращенная к искре генератора. Исследуя тщательно это явление, Герц установил причину, облегчающую искровой разряд приемнику—ультрафиолетовое свечение искры генератора. Таким образом, чисто случайно, как пишет сам Герц, был открыт важный факт, не имевший прямого отношения к цели исследования. Этот факт сразу же привлек внимание ряда исследователей, в том числе профессора Московского университета А. Г. Столетова, особенно тщательно исследовавшего новый эффект, названный им актиноэлектрическим. Опыт с вибратором Герца А. Г. Столетов. Александр Григорьевич Столетов родился 10 августа 1839 г. во Владимире в купеческой семье. По окончании Владимирской гимназии Столетов поступил на физико-математический факультет Московского университета и был оставлен там для подготовки к преподавательской деятельности. С 1862 по 1865 г. Столетов был в заграничной командировке, во время которой познакомился с видными учеными Германии Кирхгофом, Магнусом и другими. В 1866 г. Столетов становится преподавателем университета и читает курс математической физики. В 1869 г. он защищает магистерскую диссертацию «Общая задача электростатики и ее приведение к простейшему случаю», после чего утверждается доцентом университета. Защитив в 1872 г. докторскую диссертацию «Исследование о функции намагничивания мягкого железа», Столетов утверждается экстраординарным профессором Московского университета и организует физическую лабораторию, подготовившую многих русских физиков. В этой лаборатории Столетов - начал в 1888 г. свои актиноэлектрические исследования.( Подробнее о лаборатории А Г. Столетова см вкн Тепляков ГМ,Кудрявцев П. С Александр Григорьевич Столетов. - М.- Просвещение, 1966 ) Герц в своей статье о влиянии ультрафиолетового света на электрический разряд указывал на способность ультрафиолетового излучения увеличивать искровой промежуток разрядника индуктория и аналогичных разрядников. «Условия, при которых он проявляет свое действие в таких разрядах, конечно, очень сложны, и было бы желательно исследовать действие в более простых условиях, в частности устранив индуктории», — писал Герц. В примечании он указывал, что ему не удалось найти условий, которыми можно было бы заменить «так мало понятный процесс искрового разряда более простым действием». Это впервые удалось только Г. Гальваксу (1859-1922). Но Галь-вакс, а также Видеман и Эберт исследовали, как и Герц, действие света на электрические разряды высокого напряжения. Столетов решил исследовать, «получится ли подобное действие при электричестве слабых потенциалов». Указав на преимущества такого метода, Столетов продолжал: «Моя попытка имела успех выше ожидания. Первые опыты начаты около 20 февраля 1888 г. и продолжались непрерывно... по 21 июня 1888 г.». Назвав исследуемое явление актиноэлектрическим, Столетов сообщает, что он продолжал опыты и во второй половине 1888 г. и в 1889 г. и еще не считает их законченными. Для получения фотоэффекта (термин, вытеснивший термин Столетова) Столетов пользовался установкой, являющейся прототипом современных фотоэлементов. Два металлических диска (Столетов называл их то «арматурами», то «электродами») — один изготовленный из металлической сетки, а другой сплошной — соединялись с полюсами гальванической батареи через гальванометр, образуя конденсатор, включенный в цепь батареи. Перед сетчатым диском помещался дуговой фонарь, свет которого, проходя через сетку, падал на металлический диск. «Уже предварительные опыты... убедили меня, что не только батарея в 100 элементов..., но и гораздо меньшая дает во время освещения дисков несомненный ток в гальванометре, если только цельный (задний) диск соединен с ее отрицательным полюсом, а сетчатый (передний) — с положительным. Так просто и чисто было воспроизведено явление фотоэлектрического тока. Именно Столетов вывел это явление из путаницы сложных отношений электрического разряда, придумал простую конструкцию первого фотоэлемента и тем самым положил начало плодотворному изучению фотоэффекта. Столетов впервые ясно и четко показал униполярность эффекта: «Я с самого начала моих исследований категорически настаивал на совершенной униполярности актиноэлектрического действия, т. е. на нечувствительности положительных зарядов к лучам». Он же доказал безынерционность действия: «Актиноэлектрический ток мгновенно (говоря практически) прекращается, как скоро лучи задержаны экраном»; показал, что фотоэффект связан «с поглощением активных лучей» освещаемым электродом: «Лучи должны поглощаться отрицательно заряженной поверхностью. Очевидно, важно при этом поглощение в тончайшем верхнем слое электрода, в том слое, где, так сказать, сидит электрический заряд». Исследуя время, прошедшее с освещения электрода до появления фототока (это было очень трудно и не очень надежно), Столетов нашел, что это время «весьма ничтожно, другими словами, действие лучей можно считать, практически говоря, мгновенным». «Практически говоря, ток появляется и исчезает одновременно с освещением». Столетов нашел также, что зависимость фототока от напряжения не является линейной; «Ток приблизительно пропорционален электродвижущей силе лишь при наименьших величинах .этой последней, а затем, по мере ее возрастания, хотя и растет также, но все медленнее». Таким образом, Столетов весьма тщательно и подробно исследовал фотоэффект. Он ясно увидел природу явления, однако до открытия электронов он, естественно, не мог еще раскрыть подлинную его сущность: вырывание электронов светом. Тем более поразительно, что в самом первом пункте своих выводов он пишет: «Лучи вольтовой дуги, падая на поверхность отрицательно заряженного тела, уносят с него заряд». Имя Столетова по праву стоит в числе первооткрывателей фотоэлектрического эффекта. В 1890 г. Столетов продолжил свои исследования. Результаты новых исследований были опубликованы в статье «Актиноэлектрические явления в разреженных газах». Здесь Столетов исследовал роль давления газа в фотоэлементе. Он нашел, что при уменьшении давления газа ток растет сначала медленно, потом быстрее, достигая максимума при некотором давлении, которое Столетов назвал критическим и обозначил через рт. После достижения критического давления ток падает, приближаясь к конечному пределу. Столетов нашел закон, связывающий критическое давление с зарядом конденсатора. «Критическое давление пропорционально заряду конденсатора, иначе говоря, -^L-= const». Этот закон вошел в физику газового разряда под названием закона Столетова. За актиноэлектрическими исследованиями последовали рассмотренные выше статьи Столетова о критическом состоянии. Ученый с разносторонними научными интересами, лидер русских физиков, воспитатель целой плеяды физиков, занявших кафедры русских университетов, достойный представитель русской науки за рубежом, Столетов был выдвинут кандидатом в Петербургскую академию наук. Однако президент академии великий князь К. К. Романов отвел кандидатуру Столетова. Вместо Столетова был выдвинут молодой физик Б. Б. Голицын, диссертацию которого незадолго до этого Столетов подверг суровой критике. Это обстоятельство Столетов очень тяжело переживал, и эти переживания, возможно, ускорили его кончину, последовавшую 15 мая 1896 г. Открытие электромагнитных волн Вернемся, однако, к Герцу. Как мы видели, в своей первой работе Герц получил быстрые электрические колебания и исследовал действие вибратора на приемный контур, особенно сильное в случае резонанса. В работе «О действии тока» Герц перешел к изучению явлений на более далеком расстоянии, работая в аудитории длиной 14 м и шириной 12 м. Он обнаружил, что если расстояние приемника от вибратора менее 1 м, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 м, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 м, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 м. Этот результат противоречит всем законам теории дальнодействия Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей статье 1889 г., — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики». Герц предпринимает теоретический анализ излучения своего вибратора («осциллятора Герца») на основе теории Максвелла. Статья «Силы электрических колебаний, рассматриваемые по максвелловской теории» содержит результаты такого анализа. В ней Герц выписывает уравнения Максвелла в форме, отличной от максвелловской, в виде двух «триплетов»: Эти уравнения отличаются от современных обозначениями. Мы теперь пишем ?/? вместо герце-максвелловского d/d 1/c вместо А; Еx, Еу, Еz вместо X, У, Z, Нх, у Hz вместо L, М, N и применяем вместо расписывания по компонентам компактную векторную запись. К уравнениям (1) и (2) Герц прибавляет уравнения, выражающие отсутствие зарядов и токов (за исключением начала координат, где Герц помещает диполь с переменным во времени электрическим моментом El sin nt): или в современной векторной форме: Далее Герц выписывает выражения для электрической и магнитной энергии: и выводит из уравнений Максвелла теорему Пойнтинга о потоке энергии, которую он называет «в высшей степени замечательной» Современные учебники электродинамики пишут фундаментальные уравнения электромагнитной теории в форме Герца, за исключением обозначений, как было сказано выше. Теперь чаще применяют не гауссову систему единиц, как это делал Герц, а систему СИ. Герц решает уравнения, введя вспомогательную функцию, получившую название «вектор Герца», которую сам Герц выписывал в виде: где Е— заряд диполя, l — его длина, m=?/?, n= ?/T Рис. 45. Поле вибратора Герца Полученное Герцем решение дает вблизи вибратора картину электростатического поля диполя и магнитного поля элемента тока в соответствии с законом Био — Савара. Но на дальних расстояниях получается волновое поле, напряженность которого убывает обратно пропорционально расстоянию, электрическая сила и магнитная сила перпендикулярны радиус-вектору и пропорциональны синусу угла, образованного направлением радиуса-вектора с осью диполя. Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Это поле распространяется в пространстве со скоростью света с = 1/A, причем в направлении оси диполь не излучает. Максимальное излучение происходит в экваториальном направлении перпендикулярно оси диполя. Эти расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул. Рис. 46. Линии вибратора Герца Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света. В работе «О лучах электрической силы», помещенной в «Протоколах Берлинской Академии наук» 13 декабря 1888 г., Герц описывает свои опыты по распространению, поляризации, отражению, преломлению электромагнитных волн. Герц построил зеркала для опытов с этими волнами (зеркала Герца), призму из твердой смолы (асфальт) с основанием 1,2 м и высотой 1,5 м с преломляющим углом 30°. Все эти опыты доказали полную аналогию электромагнитных и световых волн. Готовя в 1891 г. издание собрания своих статей под общим названием «Исследования о распространении электрической силы», Герц написал вводную статью, в которой подробно изложил историю и содержание своих исследований. Обзор экспериментальных работ он заканчивал словами: «Целью этих работ была проверка основных гипотез теории Фарадея —Максвелла, а результат опытов есть подтверждение основных гипотез этой теории». Рис. 47. Зеркала Герца В 1889 г. Герц прочитал доклад «О соотношении между светом и электричеством» на 62-м съезде немецких естествоиспытателей и врачей. Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, тем не менее они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла... Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение». Опыты Герца вызвали огромный резонанс. Особенное внимание привлекли опыты, описанные в работе «О лучах электрической силы». «Эти опыты с вогнутыми зеркалами, — писал Герц в «Введении» к своей книге «Исследования по распространению электрической силы», — быстро обратили на себя внимание, они часто повторялись и подтверждались. Они получили положительную оценку, которая далеко превзошла мои ожидания ». Среди многочисленных повторений опытов Герца особое место занимают опыты русского физика П. Н. Лебедева, опубликованные в 1895 г., первом году после смерти Герца. П. Н. Лебедев, усовершенствовав метод Герца, получил самые короткие электромагнитные волны и провел с ними опыты по двойному лучепреломлению, которые Герц не мог воспроизвести со своими относительно длинными волнами. Статья Лебедева «О двойном преломлении лучей электрической силы» появилась одновременно на русском и немецком языках. На немецком языке она была напечатана в тех же «Annalen der Physik» Видемана, в которых публиковал свои статьи Герц. В начале этой статьи Лебедев кратко излагает ее цель и содержание: «После того как Герц дал нам методы экспериментально проверить следствия электромагнитной теории света и тем открыл для исследования неизмеримую область, естественно появилась потребность сделать его опыты в небольшом масштабе, более Удобном для научных изысканий...». Таким образом, П. Н. Лебедев уже в эпоху зарождения радиофизики и радиотехники поставил задачу миниатюризации приборов для излучения и исследования электромагнитных волн и тем самым как бы предначертал современное направление конструкторской мысли в этой области Приборы Лебедева были настолько малы, что, по выражению итальянского физика Аугусто Риги (1850—1920), который в 1894 г. разработал метод получения коротких волн, их можно было носить в жилетном кармане. Генератор Лебедева состоял из двух платиновых ци-линдров, каждый по 1,3 мм длиной и 0,5 мм в диаметре, между которыми проскакивала искра. Зеркала Лебедева имели высоту 20 мм, отверстие 12 мм, фокусное расстояние 6 мм. Для исследования преломления Лебедев использовал эбонитовую призму высотой 1,8 см, шириной 1,2 см, весом менее 2 г, тогда как призма Герца весила 600 кг. Столь же малыми были двупреломляющие призмы из ромбической серы. Для наблюдения волн Лебедев пользовался термоэлементом. Лебедев своей работой выдвинул также задачу идти по пути уменьшения длин электромагнитных волн до смыкания их с длинными инфракрасными волнами. Встретившись на одном из съездов с немецким физиком Рубенсом (1865—1922), который занимался исследованием инфракрасных волн, Лебедев высказал шутливое пожелание встретиться в эфире. Это пожелание осуществили в 20-х годах русские ученые-женщины А. А. Глаголева-Аркадьева и М.А.Левицкая П. Н. Лебедев, с одной стороны, укрепил позиции теории Максвелла, с другой стороны, первым измерил предсказанное Максвеллом световое давление и показал, что оно совпадает с теоретическим значением, полученным Максвеллом. Приборы П.Н. Лебедева Петр Николаевич Лебедев родился 8 марта 1866 г. в Москве в купеческой семье. «Свое школьное образование,— писал Лебедев в своем «Жизнеописании», приложенном к страсбургской диссертации, — я получил в Евангелическом Петропавловском церковном училище и в Реальном училище Хайновского... С сентября 1884 г. по март 1887 г. посещал Московское высшее техническое училище. Чтобы посвятить себя изучению физики, я учился с октября 1887 по август 1889 в Страсбурге, зимний семестр 1889/90 в Берлине, а с пасхи 1890 по июль 1891 снова в Страсбурге». Учителем Лебедева в Страсбурге был известный физик Август Кундт (1839—1894), к которому Лебедев относился с большим уважением и сердечной признательностью. Кундту Лебедев посвятил после его смерти теплый прочувствованный некролог, в котором характеризовал его «не только как первоклассного ученого», но и как «несравненного учителя, который заботился о будущем своей любимой науки, образуя и воспитывая ее будущих деятелей». Защитив в Страсбурге диссертацию «Об измерении диэлектрических постоянных паров и о теории диэлектриков Моссоти — Клаузиуса», Лебедев вернулся в Россию и стал работать в Московском университете у Столетова в должности лаборанта. Последним выступлением в Страсбурге и первой его печатной публикацией в Москве была небольшая заметка «Об отталкиватель-ной силе лучеиспускающих тел». Она начиналась словами: «Maxwell показал, что световой или тепловой луч, падая на поглощающее тело, производит на него механическое давление в направлении падения; величину этой давящей, силыр можно выразить в форме: p = E/V где Е — энергия, которая падает в единицу времени на поглощающее тело, а V— скорость луча в той среде, в которой находится тело». Итак, первая русская статья П. Н.Лебедева начиналась указанием на существование светового давления. Световому давлению была посвящена и последняя, оставшаяся незаконченной, статья Лебедева. Исследование светового давления стало делом жизни Петра Николаевича. В заметке об отталкивательной силе лучеиспускающих тел Лебедев показывает, что при малых размерах тела, находящегося под воздействием силы тяготения со стороны Солнца, она может быть сравнима с отталкивательной силой давления солнечных лучей. Лебедев пишет: «...Пылинки, радиус которых не превышает одной тысячной миллиметра, будут отталкиваться при 0°С в мировом пространстве с силой, порядок которой в миллион раз превышает порядок сил их ньютоновского притяжения». Однако для молекул, как указывает Лебедев, произведенные расчеты неприменимы. «Взаимодействие молекул можно рассматривать как более сложный случай, как действие резонаторов друг на друга». Исследованию этого «более сложного случая» Лебедев посвятил свою докторскую диссертацию «Экспериментальное исследование пондеромоторного Действия волн на резонаторы». Эта Диссертация заняла у Лебедева немало времени и сил. Он начал работу над темой в 1894 г., в котором вышла первая часть его работы посвященная действию электромагнитных волн. В 1896 г. была опубликована статья, посвященная действию гидродинамических волн, в 1899 г. — статья, описывающая действие акустических волн. В 1899 г. Лебедев опубликовал отдельной брошюрой все три статьи, которым предпослал особое «Введение». В 1900 г. за эту работу, представленную как магистерская диссертация, Лебедев получил ученую степень доктора, минуя магистерскую степень. Это была высокая оценка факультетом его труда. Лебедев начинает «Введение» с упоминания о «гениальных работах» Герца, которые «открыли исследованию необозримую область явлений». Лебедев указывает, что работы Герца направлены на исследование источников электромагнитного излучения и, следовательно, приводят «к одному из наиболее сложных вопросов современной физики — к учению о молекулярных силах». «...Мы должны утверждать,— пишет Лебедев, — что между двумя лу-чеиспуекающими молекулами, как между двумя вибраторами, в которых возбуждены электромагнитные колебания, существуют пондеромоторные силы...» Рис. 49. Схема опыта П.Н. Лебедева по получению ультракоротких волн Лебедев с целью исследования этих сил изучает действие волн на колеблющуюся систему.Такая система—резонатор — моделирует молекулу. Изучая действие электромагнитных волн на резонатор, Лебедев исследует отдельно действие магнитного и действие электрического вектора волны. Магнитный осциллятор, возбуждаемый магнитным вектором падающей волны, представлял собой миниатюрную катушку из четырех витков серебряной проволоки, соединенную с конденсатором из двух пластинок, вырезанных в форме «бисквитов» квадрантного электрометра. Вся система была подвешена на чувствительном подвесе. Электрический резонатор состоял из двух цилиндрических квадрантов, собранных из отдельных алюминиевых полосок, соединенных с катушкой самоиндукции из серебряной проволоки, подвешенной так, что магнитный вектор не мог вызвать ее замыкания и только электрические силы могли действовать на заряды конденсатора. Лебедев показал, что законы пондеромоторного действия волн на магнитные и электрические резонаторы тождественны. Если частота колебаний резонатора выше частоты падающей волны (частота вибратора), то он притягивается к вибратору, ниже настроенный резонатор отталкивается. Притяжение сменяется отталкиванием при переходе через резонанс. Лебедев изучил далее действие гидродинамических волн, возбуждаемых соответствующим вибратором, на гидродинамический резонатор, представляющий собой шарик на стальной пружине. Здесь он также обнаружил притяжение при частотах резонатора более высоких, чем частота вибратора, и отталкивание в противоположном случае и смену притяжения отталкиванием при переходе через резонанс. В последней части своего исследования Лебедев обратился к акустическим волнам. Здесь также наблюдались притяжения и отталкивания в зависимости от отношения частот вибратора и резонатора, но только в непосредственной близости от вибратора. По мере увеличения расстояния до резонатора притягиватель-ные силы уменьшаются и на достаточно большом расстоянии полностью исчезают, остаются лишь отталкивающие силы, достигающие наибольшей величины при резонансе. Лебедев считал, что обнаруженная им тождественность пондеромоторных сил в столь различных явлениях показывает, что элементарные законы этих явлений должны быть независимы от природы волн и воспринимающих их резонаторов. Отсюда вытекает возможность распространения этих законов на область молекулярного излучения и взаимодействия молекул. Однако, указывает Лебедев, «нет никаких данных, позволяющих сказать что-либо определенное о свойствах молекул-резонаторов». Важнейшими достижениями П. Н. Лебедева были его классические опыты по световому давлению, принесшие ему всемирную славу. Предварительное сообщение о своей работе по измерению давления света на твердые тела Лебедев сделал в 1899 г. С докладом о своих опытах он выступил на Всемирном конгрессе физиков в Париже в 1900 г. Сама работа «Опытное исследование светового давления» была опубликована в 1901 г. на немецком языке в журнале «Annalen der Physik» и в сокращенном изложении на русском языке в ЖРфХО. Эта работа многократно описывалась в учебниках, статьях и книгах, и -мы здесь ограничимся только кратким рефератом статьи, сделанным самим Лебедевым для немецкого реферативного журнала «Fortschritte der Physik»: «...Автор исследует пондеромоторные силы, с которыми белый, красный и голубой свет действуют на поглощающие, покрытые платиновой чернью, и отражающие (алюминий, платина, никель и слюда) крылья в высоком вакууме. Опыты были проведены с тремя различными приборами и с двумя различными калориметрами; они были разбиты на десять независимых групп, и их результаты сводятся к следующему: 1. Падающий пучок световых лучей оказывает давление как на поглощаю-Щее, так и на отражающее тело; это пондеромоторное действие не зависит ни от известных вторичных круксовых сил, вызываемых нагреванием, ни от явлений конвекции. 2. Эти силы светового давления прямо пропорциональны падающему количеству энергии и не зависят от цвета световых лучей. 3. Эти силы светового давления в пределах ошибок наблюдения количественно дают полное совпадение с пондеромоторными силами излучения, вычисленными Максвеллом и Бартоли. Таким образом, существование сил давления световых лучей, предсказанных Максвеллом и Бартоли, доказано экспериментально». Итальянский физик Адольфо Бартоли (1851—1896), о котором упоминает здесь Лебедев, обосновал из термодинамических соображений в 1876 г. существование светового давления. В своей последней статье «Давление света» Лебедев предполагал посвятить доказательству Бартоли целый параграф. Этот параграф был написал П. П. Лазаревым. Результат Лебедева произвел огромное впечатление. В. Томсон (лорд Кельвин) признавался К. А. Тимирязеву, что он всю жизнь воевал с Максвеллом из-за его светового давления, но Лебедев теперь заставил его признать свою неправоту. В 1901 г. Лебедев становится профессором Московского университета, в котором он десять лет назад начинал работу у Столетова в скромной должности лаборанта. Теперь он всемирно известный ученый, глава школы физиков, в которой под его руководством работают десятки учеников. Из школы Лебедева вышли такие известные советские ученые, как академик П. П. Лазарев, в свою очередь создавший школу, чл.-кор. Академии наук СССР В. К. Аркадьев, также глава школы магнетологов и радиофизиков. Учениками Лебедева были А. Б. Млодзеевский, Т. П. Кравец, К. П. Яковлев, В. Д. Зернов, Н. Е. Успенский, Р. А. Колли, В. И. Романов, А. К. Тимирязев, Н. А. Капцов и многие другие. Вначале исследования П. Н. Лебедева и его учеников выполнялись в неудобных для научных изысканий лабораториях общего практикума, устроенных еще Столетовым. Приборов не хватало. Средства, отпускаемые на нужды лаборатории, были очень малы. Работали после 3 часов, когда кончались занятия в практикуме. Поэтому Лебедеву постоянно приходилось вести борьбу за улучшение условий для исследовательской работы, что отнимало у него много сил и времени. Обстановка для исследований улучшилась после создания в 1903 г. физического института. Здесь было отведено две большие комнаты во втором этаже под лабораторию Лебедева и полуподвальное помещение для исследований молодых учеников Лебедева. Приборов было еще очень мало, не хватало столов, вместо них иногда использовались ящики из-под оборудования, но это была уже настоящая исследовательская лаборатория, где можно было работать в любое время. Как вспоминал Н. А. Капцов, Лебедев появлялся в лаборатории в 11 часов и начинал обход своего «подвала», подолгу беседуя с каждым работающим, требуя сознательного отчета обо всем проделанном. Затем Лебедев отправлялся в мастерские. Его интересовало усвоение учениками навыков ручной работы. Лебедев был очень требователен к своим ученикам, он «требовал, чтобы каждый из работающих в лаборатории строго продумывал весь план своей работы. Но этот план исследовательской работы должен был быть не застывшим и раз и навсегда установленным, а действенным и живым». Молодым ученикам Лебедева очень помогали организованные им еще в Столетов ской лаборатории коллоквиумы. Они проводились раз в неделю. Ученики Лебедева делали доклады, затем следовало обсуждение, сам П. Н. Лебедев выступал на этих коллоквиумах с сообщениями о последних достижениях физики. На этих коллоквиумах все — начиная со студента и кончая руководителем — чувствовали себя членами большой семьи, и таким путем создавалось то единение работающих, которыми всегда отличалась лебедевская лаборатория . И з коллоквиумов в спо следствии выросло Московское физическое общество, основателем и первым председателем которого был П. Н. Лебедев. Питомцы лебедевской школы и их ученики составили большой отряд советской физики. В 1902 г. Лебедев выступил на съезде Немецкого астрономического общества с докладом, в котором вновь вернулся к вопросу о космической роли светового давления. В историческом обзоре этого доклада Лебедев напоминает о гипотезе Кеплера, который предположил, что отталкивание кометных хвостов Солнцем обусловлено давлением его лучей на частицы хвоста. Действие света на молекулу, указывает Лебедев, зависит от ее избирательного поглощения. Для лучей, поглощаемых газом, давление обусловлено законом Максвелла, лучи, не поглощаемые газом, действие на него не оказывают. Лебедев ставит задачу определить давление света на газы. Эта многолетняя работа, потребовавшая от экспериментатора много сил и остроумия, подводила итог всей его научной деятельности начиная с 1891 г. Для измерения малых сил давления Лебедев ставил эксперимент таким образом, чтобы «газ свободно мог перемещаться в направлении пронизывающих его лучей и производил давление на очень чувствительный поршневой аппарат, на который лучи света непосредственно действовать не могли». Чтобы избежать влияния конвекционных токов, Лебедев смешивал газ с водородом, обладающим значительной теплопроводностью, что позволяло быстро выравнивать плотность в разных точках газа. Эта трудная экспериментальная работа осталась непревзойденным образцом экспериментального искусства. За работы по давлению света Лебедев был избран в 1911 г. почетным членом Королевского института в Лондоне. Лебедев глубоко интересовался проблемами астрофизики, активно работал в Международном союзе по исследованию Солнца, написал ряд статей о кажущейся дисперсии межзвездной среды. Открытие Хейлом магнетизма солнечных пятен направило его внимание на исследование магнетизма вращения. В последние годы жизни его внимание привлекла проблема ультразвука. Этими вопросами занимались его ученики В. Я. Альтберг и Н. П. Неклепаев. Сам Лебедев написал заметку «Предельная величина коротких акустических волн». Его ученики П. П. Лазарев и А. К. Тимирязев исследовали явление внутреннего трения в разреженных газах. Но вся эта напряженная работа оборвалась в 1911 г., когда Лебедев вместе с другими профессорами покинул университет в знак протеста против действий реакционного министра просвещения Кассо. Русская и международная общественность поспешила на помощь Лебедеву, но силы его были подорваны, и 14 марта 1912 г. П. Н. Лебедев скончался. В историю физики Лебедев вошел как первоклассный экспериментатор, решивший ряд труднейших проблем современной ему физики. Значение Лебедева для России не исчерпывается этим. Он был создателем московской Школы физиков. Вышедшие из этой Школы ученые сыграли важную роль в становлении советской физики. Изобретение радио Как известно, Герц не предвидел возможности применения электромагнитных волн в технике. В самом деле, было трудно увидеть в слабых искорках, которые Герц рассматривал в лупу, будущее средство связи, перекрывающее ныне космические расстояния до Венеры и Марса и позволяющее управлять самоходным аппаратом на Луне. Даже человеку с неистощимой фантазией, знаменитому писателю Жюлю Верну не удалось предвидеть радиосвязь, и герои его романа «Плавучий остров», написанного после опытов Герца, не знают способов беспроводной связи. Вообще между принципиальным открытием и его техническим приложением лежит огромное расстояние. Эйнштейн не предвидел в обозримом будущем возможной реализации соотношения Е=тс*, Резерфорд считал химерой использование атомной энергии. Только люди с особыми способностями могут найти разумное техническое воплощение научной идеи. Именно такими способностями обладал замечательный русский физик Александр Степанович Попов, продемонстрировавший примерно через год после смерти Герца первый радиоприемник, открывший возможность практического использования электромагнитных волн для целей беспроволочной связи. Александр Степанович Попов родился 16 марта 1859 г. на Урале (поселок Турьинский рудник) в семье священника. После окончания в 1877 г. общеобразовательных классов Пермской духовной семинарии он не стал продолжать духовное образование, а поступил на физико-математический факультет Петербургского университета. В университете его увлекла электротехника. Он работал монтером в товариществе «Электротехник», и первые его труды в 1882 г. были посвящены динамо-электрическим машинам. Хотя Попов был оставлен при университете для подготовки к профессорскому званию, он долго не пробыл в аспирантуре, как бы сказали сейчас, и с 1883 г. стал преподавателем Минного офицерского класса в Кронштадте, совмещая эту должность с педагогической работой в Техническом училище Морского ведомства в Кронштадте. В Минном офицерском классе Попов проработал до 1901 г., когда он был избран профессором кафедры физики Электротехнического института в Петербурге. В 1905 г. он был избран директором института и в этой должности скончался от кровоизлияния в мозг 13 января 1906г..(Даты рождения и смерти А. С. Попова указаны по новому стилю. По старому стилю А. С. Попов родился 4 марта 1859 г., а умер 31 декабря 1905 г. ) По роду своей служебной деятельности А. С. Попов был тесно связан с военно-морским флотом, и именно во флоте произошло рождение великого открытия. Исторические условия для открытия созрели, к нему разными путями в разных странах почти одновременно шли несколько людей: Попов, Резерфорд, Маркони и другие. Первым добился успеха А. С. Попов. В 1889 г. А. С. Попов прочитал в собрании минных офицеров цикл лекций «Новейшие исследования о соотношении между световыми и электрическими явлениями» по следующей программе: «1. Условия происхождения колебательного движения электричества и распространение электрических колебаний в проводниках. 2. Распространение электрических колебаний в воздухе —лучи электрической силы. Отражение, преломление и поляризация электрических лучей. 3. Актиноэлектрические явления — действие света вольтовой дуги на электрические заряды». Эти лекции сопровождались демонстрациями опытов Герца. Они имели большой успех, и Морской технический комитет предложил морскому министерству повторить лекции с демонстрациями в Петербурге, в Морском музее для петербургских офицеров. «Опыты, произведенные германским профессором Герцем в доказательство тождественности электрических и световых явлений, — говорилось в этом предложении,—представляют большой интерес не только в строго научном смысле, но также и для уяснения вопросов электротехники». Очевидно, что А. С. Попов уже говорил в своих лекциях о возможности практического использования волн Герца, и руководящие лица русского военно-морского флота заинтересовались этим. Морское министерство согласилось на повторение лекций Попова в Петербурге и выделило необходимые средства на перевозку приборов. Лекция «Об электрических колебаниях с повторением опытов Герца» состоялась в Морском музее 3 апреля 1890 г. Можно с большим основанием утверждать, что А. С. Попов был не только одним из первых в России «пропагатором герцологии» (термин Столетова), но и тем, кто сразу оценил практическое значение открытий Герца и начал решать задачу их технического использования. 7 мая 1895 г. А. С. Попов на заседании физического отделения Русского физико-химического общества демонстрировал сконструированный им радиоприемник. Этот день в нашей стране ежегодно отмечается как день рождения радио. Детектором электрических колебаний в приемнике Попова был изобретенный в 1890 г. французским физиком Эдуардом Бранли (1844—1940) прибор, названный английским ученым Оливером Лоджем (1851—1940) когерером. Это был своеобразный полупроводник. Стеклянная трубка, заполненная металлическими опилками, была плохим проводником электричества. Однако под воздействием электрических колебаний ее электропроводность резко возрастала. В опытах Бранли она менялась от миллионов до сотен и десятков ом. Это уменьшение сопротивления сохраняется и после прекращения воздействия колебаний «иногда более 74 часов», по наблюдению Бранли. Трубку можно вернуть в состояние плохой электропроводности «слабыми отрывистыми ударами по дощечке, которая поддерживает трубку». Лодж в 1894 г. прочитал в Лондонском Королевском обществе лекцию памяти Герца под названием «Творение Герца». Здесь он говорил и о трубке Бранли: «Этот прибор, который я называю когерером, удивительно чувствителен как детектор герцевских волн». В опытах Лоджа когерер чувствовал влияние искры на расстоянии соро_ка ярдов (около 40 м). Лодж применял различные способы приведения когерера в рабочее состояние, в том числе и с помощью вибраций электрического звонка, смонтированного на одной доске с когерером. Однако Лодж не додумался до использования звонка и как регистратора поступившего сигнала и как автомата для приведения когерера в рабочее состояние. Это сделал А. С. Попов. Попов же применил антенну для улавливания электромагнитных волн. Сочетав звонок, когерер, антенну, А. С. Попов построил прибор, который позже (в июле 1895 г.) был назван Д. А. Лачиновым «грозоотметчиком», имея в виду его применение как регистратора грозовых разрядов. Однако Попов своим приемником пользовался и для приема волн, создаваемых передатчиком. В своей статье «Прибор для обнаружения и регистрирования электрических колебаний», опубликованной в журнале Русского физико-химического общества в 1896 г., А. С. Попов писал: «В соединении с вертикальной проволокой длиною 2,5 метра прибор отвечал на открытом воздухе колебаниям, произведенным большим герцевым вибратором (квадратные листы 40 сантиметров в стороне) с искрой в масле, на расстоянии 30 сажен». Рис. 50. Схема приёмника Попова Эти строки писались в декабре 1895 г. Таким образом, А. С. Попов в 1895 г. проводил опыты по передаче и приему электромагнитных волн на расстояние до 60 м. Летом того же года его прибор использовался для регистрации электрических возмущений в атмосфере как при наличии грозовых разрядов, так и при отсутствии гроз. А. С. Попов заканчивал свою статью словами, что «прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстоянии при помощи быстрых электрических колебаний». При этом он указывал на необходимость создания достаточно мощного генератора таких колебаний. 20 января 1897 г. А. С. Попов выступил на страницах газеты «Котлин» со статьей «Телеграфирование без проводов». Заглавие статьи ясно указывает, что в ней речь идет не о передаче и приеме спорадических сигналов, а о «телеграфировании», т. е. передаче и приеме осмысленного текста условным кодом. Статья появилась в связи с сообщением об опытах Маркони. Попов напоминает, что прибор, аналогичный описанному в сообщении, был им построен в 1895 г. и демонстрировался на заседании физического отделения Русского физико-химического общества в апреле (7 мая по н. ст.). Он указывает, что его прибор «приспособлен для опытов с электромагнитными волнами» и демонстрировался на научных заседаниях и лекциях. А С. Попов указывает, что с помощью этого прибора он отмечал грозовые разряды на расстоянии «более 25 верст». Он подчеркивает, что сигнализация электрическими волнами «и сейчас возможна», но герцевские вибраторы как источник электрических лучей «очень слабы». Указав, что действие тумана на электрические волны «не было наблюдаемо», Попов подчеркивает, что «можно ожидать существенной пользы от применения этих явлений в морском деле...». И в дальнейшем А. С. Попов неустанно работает над разработкой радиотелеграфной связи для флота. Работая для флота и отчетливо понимая всю важность этой работы для своей родины, А. С. Попов не спешил с печатными публикациями, стремясь информировать лишь специальную аудиторию: морских офицеров и ученых. Но с момента появления в печати сведений о работе Маркони А. С. Попов был вынужден выступить в защиту своего приоритета. Статья в газете «Котлин» от 20 января 1897 г. была первым таким выступлением А. С. Попова. Гульельмо Маркони (1874—1937) в июне 1896 г. сделал заявку на патент для своего изобретения. Патент на «усовершенствование в передаче электрических импульсов и сигналов и в аппаратуре для этого» был выдан Маркони 2 июля 1897 г., т. е. спустя более двух лет после демонстрации А. С. Поповым своего приемника. Патент Маркони был английским и закреплял его приоритет в Англии. А. С. Попов ограничился сообщением 7 мая 1895 г. и печатной публикацией 1896 г. и своего изобретения ни в России, ни где бы то ни было не патентовал. Г. Маркони Исторически приоритет А. С. Попова бесспорен, он бесспорен с точки зрения научного приоритета. Но юридически патент Маркони, хотя и является только английским, был первым правовым актом, закрепляющим авторство изобретателя. Маркони был капиталистическим дельцом, он ничего не публиковал и не сообщал до подачи заявки на патент, он стремился закрепить не научный, не исторический приоритет, а юридический. И хотя истории науки нет никакого дела до юридической стороны, она решает вопрос с точки зрения исторической правды, находятся историки науки, которые защищают приоритет Маркони. Заслуга Маркони в дальнейшем развитии радио бесспорна, в развитии, но не в открытии. Исторически точно установленным фактом является тот факт, что открытие радио было сделано А. С. Поповым и дата первого публичного сообщения об этом открытии 25 апреля старого стиля, 7 мая нового стиля 1895 г. является датой одного из величайших изобретений в истории человеческой культуры. А. С. Попов и Г. Маркони шли от одной схемы радиоприемника, используя принцип когерера. Другим путем проблему передачи сигналов на расстояние пытался решить Эрнест Резерфорд (1871—1937). Еще находясь в Новой Зеландии, он изучал намагничивание железа высокочастотными разрядами. Результаты своих исследований он опубликовал в «Трудах Ново-Зеландского института» за 1894 г. Переехав в Кембридж, он продолжал заниматься этим вопросом и, установив уменьшение намагничивания стального стержня под влиянием электрических колебаний, предложил воспользоваться этим эффектом для детектирования электрических колебаний. Статья Резерфорда «Магнитный детектор электрических волн и некоторые его применения» была опубликована в 1897 г., в год выдачи патента Маркони. В этой статье Резерфорд сообщил, в частности, об использовании детектора в опытах по обнаружению электромагнитных волн на больших расстояниях. Он писал: «Мы работали с вибратором Герца, имеющим пластины площадью 40 см2 и короткий разрядный контур; мы получили достаточно большое отклонение магнитометра на расстоянии 40 ярдов, причем волны проходили через несколько толстых стенок, расположенных между вибратором и приемником». «В дальнейших опытах была поставлена задача— определить максимальное расстояние от вибратора, на котором можно обнаружить электромагнитное излучение...» «Первые опыты проводились в лабораториях Кембриджа, причем приемник находился в одном из дальних зданий. Достаточно большой эффект был получен на расстоянии около четверти мили от вибратора, и, судя по величине отклонения, эффект можно было бы заметить на расстоянии, в несколько раз большем...» Но в том же, 1897 г., когда была опубликована эта статья, Резерфорд узнал о результатах Маркони и прекратил дальнейшие опыты с своим детектором. Его внимание привлекла область, в которой ему было суждено обессмертить свое имя, — радиоактивность. Проводя исследования в этой области, он пришел к открытию атомного ядра и первых ядерных реакций. История открытия радио, в которой сплелись имена многих исследователей разных стран, еще раз подтверждает важный закон истории науки, о котором писал ф. Энгельс в 1894 г., за год до открытия радио, говоря, что, если время для открытия созрело, «это открытие должно было быть сделано».( Энгельс ф. В. Боргиусу. — Маркс К., Энгельс ф. Соч., 2-е изд., т. 39, с. 176. ) Открытие радио подтвердило справедливость теории Максвелла высшим критерием истины — практикой. Теория Максвелла выдвинула перед физикой ряд острых и глубоких вопросов, решение которых привело к новому революционному этапу в истории физики. |
|
||
Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх |
||||
|