|
||||
|
Физический смысл волновой функции Вернемся к нашему опыту с отверстием в экране. Поставим далеко за экраном фотопластинку. Электрон, попадая на нее, вызовет почернение какого-либо зерна эмульсии, после чего его координата определится с точностью до размера зерна. Пучок электронов после дифракции на отверстии зачернит круг с радиусом R=1\lambda/d. Теперь уменьшим интенсивность пучка электронов так, чтобы каждый электрон падал на пластинку, скажем, раз в минуту. После долгого ожидания получится та же картина, что и при интенсивном пучке. Но электроны падали поодиночке, значит, уже одному электрону следует приписать вероятность попасть в то или иное место. Уже для одного электрона эта вероятность распределена вблизи пластинки так, что она максимальна в центре, слегка убывает от центра к радиусу R, а затем за пределами дифракционного пятна начинает резко убывать. Проследим, как осуществляется соотношение неопределенности в нашем опыте. На экран падают электроны с очень точно определенным импульсом - их поперечный импульс равен нулю, следовательно, поперечная координата полностью неопределенна - теперь мы можем сказать точнее: вероятность до прохождения отверстия найти электрон в любой точке экрана одинакова. После прохождения отверстия поперечный импульс делается неопределенным, зато поперечная координата становится более определенной. Вероятность найти электрон на фотопластинке вне дифракционного пятна мала, неопределенность поперечной координаты \del q~R. Анализ такого рода опытов привел Макса Борна (1926) к мысли, что волновая функция описывает вероятность того или иного значения координаты или импульса электрона в зависимости от типа поставленного опыта. При этом вероятность определяется квадратом волновой функции. Что помогло прийти к такому заключению? Вспомним, что теория волновых явлений света - интерференции и дифракции - была разработана задолго до уравнений Максвелла, до того как была понята электромагнитная природа света. Предполагалось только, что источник света испускает волны неизвестной природы, а интенсивность света пропорциональна квадрату той величины, которая колеблется. В современном представлении колеблются во времени и пространстве электрические и магнитные поля и интенсивность света пропорциональна их квадрату. Но почти все волновые проявления не зависят от природы света. Было естественно и для волн, связанных с частицами, считать, что есть некий волновой процесс, а интенсивность - в нашем случае вероятность - пропорциональна квадрату волновой функции. Сначала предполагалось, что волновым свойствам частицы соответствует некое реальное физическое поле, подобное электромагнитному полю в световой волне. Но тогда уже один электрон давал бы в одном акте всю дифракционную картину, между тем он чернит одно зерно. Это только один из доводов; от этого взгляда на природу волнового процесса пришлось отказаться по многим причинам. Таким образом, волновая функция частицы не есть какое-либо физическое поле, она представляет собой запись потенциальных возможностей исхода того или иного последующего наблюдения. Волновая функция есть максимально полное допустимое описание состояния частицы. Она заменяет классическое состояние, которое задается координатами и скоростями. Волновая функция, описывающая состояние электромагнитного поля, имеет ту же природу; она не есть электромагнитное или какое-либо другое физическое поле, она определяет только вероятность того или иного значения поля в каждой точке. Применению квантовой механики к полю посвящен конец этой главы. |
|
||
Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх |
||||
|