|
||||
|
Глава 19 ПРОБЛЕМА ТЯГИ Дальние межпланетные экспедиции и проблема тяги Общеизвестно, что на сегодняшний день основой космической экспансии человечества по-прежнему являются ракеты на жидком топливе. Однако имеющиеся в наличии и перспективные ракеты на жидком топливе, к сожалению, не способны решить самую интересную (но и самую трудную) задачу в истории человечества — в приемлемые сроки доставить экспедицию из нескольких космонавтов к какой-либо из планет Солнечной системы. И хотя некоторые простейшие межпланетные полеты и возможно реализовать на кораблях с термохимическими ракетными двигателями, они потребовали бы поистине грандиозных затрат топлива Это дает основание считать подобные полеты если и не принципиально, то практически неосуществимыми. Такой вывод является следствием малой величины химической энергии. Разумеется, все познается в сравнении, и говорить можно только об относительных величинах. Ведь сама по себе химическая энергия не так уж мала. Один килограмм современного ракетного топлива способен выделить при сгорании примерно 4000 ккал тепла. Одна килокалория тепловой энергии эквивалентна 427 килограммометрам механической работы. Это значит, что тепла, выделяющегося при сгорании одного килограмма топлива, достаточно, чтобы поднять массу в один килограмм на высоту 40 004 271 700 километров, считая поле земного тяготения постоянным (в действительности эта высота будет больше 2300 километров). В свою очередь «работа отрыва», то есть работа, необходимая для «удаления» одного килограмма массы с поверхности Земли в бесконечность, как это должно происходить при всех межпланетных полетах, эквивалентна перенесению на высоту, равную земному радиусу (примерно 6400 километров). Это означает, что для отрыва от Земли одного килограмма массы межпланетного корабля теоретически потребовалось бы менее четырех килограммов ракетного топлива. Но в действительности расход топлива должен быть во много раз больше. Это объясняется многочисленными непроизводительными затратами энергии топлива, сопровождающими такой взлет. Часть энергии теряется в камере сгорания двигателя, то есть в процессе перехода химической энергии в тепловую, другая часть — в двигателе же, при переходе тепловой энергии в кинетическую энергию реактивной струи. Значительная энергия бесполезно теряется и с вытекающими из двигателя газами. Часть энергии уходит на подъем самого топлива в поле земного тяготения. Приходится преодолевать сопротивление земной атмосферы, имеют место так называемые гравитационные потери, связанные с работой двигателя ракеты, взлетающей в поле земного тяготения, и так далее. Вот почему столь большая в действительности химическая энергия оказывается не в состоянии решить сложные задачи космонавтики. Доля полезной нагрузки во взлетной массе «химических» межпланетных ракет составляет лишь доли процента, что и приводит к чрезмерно большим значениям взлетной массы. На этом фоне заметно выигрывают ракеты с ядерными двигателями (ЯРД), разговоры о которых ведутся с 20-х годов XX века. О них мы сейчас и поговорим. Межпланетные корабли с ядерными двигателями Итак, чтобы сообщить одному килограмму массы вторую космическую скорость, необходимую для совершения межпланетного полета, нужна энергия примерно четырех килограммов химического ракетного топлива, но ту же энергию в состоянии выделить крупинка ядерного горючего — урана с массой меньше миллиграмма! Процессы, при которых выделяется ядерная энергия, подразделяются на радиоактивные превращения, реакции деления тяжелых ядер, реакции синтеза легких ядер и реакции аннигиляции. Для использования в ракетной технике более подходит хорошо изученная управляемая реакция деления ядер урана или плутония. Ведь только в этом случае удается пока воздействовать на ход ядерной реакции и таким образом регулировать скорость выделения атомной энергии. В результате каждого единичного акта ядерного деления осколки разделившегося атомного ядра разлетаются в противоположные стороны под действием возникающей между ними электростатической силы отталкивания. Скорость этого разлета очень велика — порядка 10–15 тысяч км/с. Если все эти хаотично движущиеся и мчащиеся с огромной скоростью атомные ядра — осколки деления, образующиеся в ходе цепной реакции, заставить двигаться организованно, в одном общем для всех направлении, то было бы возможно создание ракетного двигателя с колоссальным удельным импульсом и скоростью истечения 20 000-30 000 м/с (против 3500–4000 м/с у современного ракетного двигателя). В 50-е годы на волне эйфории, вызванной созданием и вводом в эксплуатацию мощных атомных электростанций, появилось много проектов транспортных систем, использующих энергию ядерного деления. Планировалось оснастить такими двигателями морские и речные суда, самолеты и даже автомобили. Активно обсуждалась и идея создания ракет с атомными двигателями. Лишь много позже конструкторы были вынуждены признать, что создание такой «атомной ракеты» не представляется возможным — со временем подобную схему даже стали называть «псевдоракетой». И дело не только в том, что организация движения продуктов ядерной реакции, подобно тому как это происходит в обычных термохимических ракетных двигателях с продуктами реакции сгорания топлива, пока не осуществлена. Здесь возникает еще одна трудность принципиального характера. Она связана с ограничением максимально возможной тяги подобного двигателя. Частицы вещества в двигателе — продукты ядерной реакции — движутся с колоссальной скоростью, соответствующей температурам во многие миллионы градусов. В результате мириадов ударов этих частиц о стенки двигателя последние почти мгновенно прогорают! Чтобы двигатель был работоспособным при столь большой скорости движения частиц, нужно сильно уменьшить число этих частиц, то есть соответственно в миллионы раз уменьшить тягу двигателя. Вот почему «псевдоракетный» двигатель мог бы работать лишь при ничтожно малой тяге. Применение атомной энергии в ракетной технике требует новых способов использования этой энергии. Принципиальная разница здесь состоит в том, что необходимо разделять источник энергии и рабочее вещество, создающее тягу в двигателе. Подобная схема усложняет конструкцию, но позволяет преодолеть целый ряд проблем. Очевидно, в этом случае источником энергии должен служить атомный реактор или «котел» — подобный используемым на атомных электростанциях или на подводных лодках. В таком котле атомная энергия преобразуется в тепловую и сообщается какому-либо веществу, которое используется для охлаждения котла. Это вещество, нагретое в котле до высокой температуры, и может служить непосредственно «отбросной» массой ракетного двигателя, вытекая из него наружу и таким образом создавая реактивную тягу. Один из таких проектов описан в сборнике «Новое в военной технике», выпущенном в 1958 году. Его авторы представляли ракету в виде комбинированного атомно-химического пятиступенчатого носителя, где первой стартовой ступенью являлась химическая ракета из семи жидкостных двигателей, работающих на кислороде и водороде. Баки с топливом первой ступени служили защитной экранировкой второй ступени, где находился реактор атомной ракеты. Третья ступень и последующие после атомной также были на химическом топливе. Их запасы топлива обеспечивали защиту экипажа, находящегося в головной части составной ракеты. По мнению конструкторов, включенный атомный двигатель на значительной высоте уже не представлял опасности, а отделившаяся вторая ступень с реактором по истечении некоторого времени, замедлив свое движение, должна была попасть в более плотные слои атмосферы и сгореть. Согласно расчетам уран-графитовый реактор атомной ступени обеспечивал бы скорость истечения газов не ниже 10000 м/с. В качестве рабочего вещества использовался аммиак. При этом конечная скорость последней ступени должна достигать 20 450 м/с. Вес шарообразной кабины с экипажем (то есть полезная нагрузка) — не менее 1,4 тонны. Другой проект ракеты с уран-графитовым ЯРД разрабатывался в рамках американской программы «Ровер» («Rover»), инициированной в середине 50-х годов. Первый реактор для ракеты «Ровер» получил название «Киви» по имени безобидной новозеландской птицы, отличающейся тем, что она не способна летать; выбор названия объясняется назначением реактора — он предназначался не для полета, а лишь для наземных стендовых испытаний. Активная зона реактора представляет собой связки тепловыделяющих элементов из графита, в котором диспергированы частицы делящегося ядерного горючего — карбида урана с покрытием из пиролитического графита. В тепловыделяющих элементах предусмотрены каналы для течения рабочего вещества, которым служит жидкий водород. Чтобы устранить коррозионное действие водорода на графит, эти каналы имеют покрытие из карбида ниобия. Первая серия из трех реакторов «Киви-А» была предназначена для испытаний на газообразном водороде, начатых в 1959 году. Расчетная тепловая мощность для этих реакторов 100 МВт. Затем, начиная с 1962 года, начались испытания второй серии реакторов — «Киви-Б» тепловой мощностью 1100 МВт, предназначенных уже для работы на жидком водороде (всего испытывалось семь модификаций реактора «Киви»). Эти эксперименты выявили многочисленные дефекты реакторов, подвергавшихся поэтому различным конструктивным доработкам, и были закончены в августе 1964 года испытанием реактора «В-4Е-301». В ходе этого испытания двигатель работал на мощности в 900 МВт более восьми минут, развивав тягу порядка 22700 килограммов при скорости истечения 7500 м/сек. Затем в самом начале 1965 года реактор был разрушен в ходе специального испытания «Киви-ТНТ», при котором его довели до взрыва вследствие разгона реактора с целью выяснения особенностей такого катастрофического режима. Если нормально переход реактора с нулевой мощности на полную требует десятков секунд (что, кстати, совершенно недостижимо для стационарных реакторов), то при этом испытании длительность такого перехода определялась лишь инерцией регулирующих стержней; она составляла тысячные доли секунды. Примерно через 44 миллисекунды после перевода стержней в положение полной мощности реактор был разрушен действием сил, эквивалентных взрыву 50–60 килограммов тринитротолуола. Еще в ходе работ по программе «Ровер», в 1961 году началась разработка ядерного ракетного двигателя «НЕРВА» («NERVA»), предназначенного уже для летных испытаний. В том же году были начаты работы и по ракете, предназначенной для испытаний двигателя «НЕРВА» и получившей название «Рифт» («Rift»). Однако впоследствии работы по этой ракете, которую предполагалось использовать в качестве верхней ступени космической ракеты-носителя «Сатурн-5» (Проект «Apollo-Х»), были прекращены. Первые этапы работы по двигателю «НЕРВА» базировались на реакторе, изготовленном в нескольких модификациях фирмой «Вестингауз», получившем обозначение «NRX» и про сути представлявшем собой реактор «Киви-Б», но специально модифицированном для этих работ. Испытания реакторов начались в 1964 году, и в них была достигнута мощность в 1000 МВт, тяга примерно в 22,5 тонны и скорость истечения более 7000 м/с. В ходе испытаний, продолжавшихся в 1965 году, один из реакторов работал на полной мощности 1100 МВт в течение примерно 16,5 минуты; скорость истечения составила 7500 м/с. В 1966 году впервые было произведено испытание всего двигателя с реактором на полной мощности; в первой серии этих испытаний двигатель работал в течение 110 минут, из которых 28 минут на полной мощности; тепловая мощность реактора достигала 1100 МВт, максимальная температура водорода на выходе из реактора — примерно 2000 °C, тяга двигателя — 20 тонн. В 1963 году Лос-Аламосская лаборатория начала разработку новых усовершенствованных твердофазных графитовых реакторов для двигателя «НЕРВА» по программе «Феб» («Feb»). Первый из этих реакторов «Феб-1» имеет примерно такие же размеры, как и «Киви-Б» (диаметр 81,3 сантиметра, длину 1,395 метра), однако рассчитан на примерно вдвое большую мощность. На базе этого реактора планировалось создать двигатель «НЕРВА-1». Более поздняя модификация «Феб-2» мощностью порядка 4000–5000 МВт была предназначена для использования на летном варианте двигателя «НЕРВА-2». Этот двигатель с тягой в диапазоне 90-110 тонн должен был иметь исходное значение скорости истечения 8250 м/с (с последующим увеличением до 9000 м/с). Высота двигателя равна примерно 12 метрам, наружный диаметр (по корпусу реактора) — 1,8 метра. Расход водорода для двигателя с реактором «Феб-1» составляет 32–34 кг/с, с «Феб-2» — 136 кг/с. Вес двигателя «НЕРВА-2» составлял примерно 13,6 тонны. В феврале 1967 года были проведены стендовые испытания реактора «Феб-1», а реактора «Феб-2» — в июне 1968 года. Последний работал более часа, причем 12 минут — на тепловой мощности 4200 МВт. Однако из-за финансовые трудностей на первом же этапе конструкторы отказались от схемы с использованием двигателя «НЕРВА-2» и переключились на проектирование двигателя «НЕРВА-1» повышенной мощности. Такой двигатель длиной 9 метров должен был иметь тягу 34 тонны и скорость истечения 8250 м/с с длительностью работы до 50 минут. Испытание реактора «N RX-A6», подготовленного для этой программы, было проведено 15 декабря 1967 года. В июне 1969 года состоялись первые горячие испытания экспериментального двигателя «NERVA ХЕ-1» на тяге 22,7 тонны. Кстати сказать, во время испытания реактора «Феб-2» он был окружен защитным экраном толщиной около 1,8 метра, а также другим экраном, в котором между стенками высотой 4,6 метра из алюминиевого сплава текла смесь борной кислоты и буры, хорошо поглощающая нейтронное и гаммаизлучение. Несмотря на эту внушительную биологическую защиту, управление реактором производилось дистанционно — с пункта управления, отнесенного на расстояние примерно 3,2 километра. Хотя реактор типа «Феб» в принципе аналогичен по устройству графитовым ядерным реакторам атомных электростанций и подлодок, требование максимального уменьшения веса и размеров при одновременном резком повышении мощности, а также особенности применения реактора в ядерном ракетном двигателе радикально меняют конструкцию реактора. Эти различия связаны с конструкцией активной зоны, системой подачи рабочего вещества-охладителя, конструкцией отражателя нейтронов, системой регулирования мощности. В частности, например, регулирование мощности реактора, которое необходимо в очень широком диапазоне, осуществляется с помощью регулирующих стержней из вещества, хорошо поглощающего нейтроны, например сплава с большим содержанием бора, как это делается и в обычных реакторах, но вместо обычного погружения стержней в реактор для замедления цепной реакции и соответствующего уменьшения мощности в реакторе «Феб» вращающиеся бериллиевые стержни поворачиваются так, что часть их поверхности с нанесенным нейтронопоглощающим веществом (бороалюминиевый сплав) обращается внутрь активной зоны. Таких стержней предусмотрено 12, их поворот осуществляется с помощью пневматического привода, управляемого электросигналами автоматической системы управления и регулирования; эта же система обеспечивает возможность остановки и повторного запуска реактора, которые, кстати сказать, должны выполняться гораздо быстрее, чем в обычных стационарных реакторах: если обычные реакторы включаются в течение нескольких дней, а то и недель, то ракетный — в считанные секунды. Американские конструкторы, работавшие по программе «Ровер», предполагали создать на базе ядерного ракетного двигателя «НЕРВА-2» своеобразную стандартную ядерную ступень, с помощью которой можно было бы строить самые различные ракетно-космические системы. При установке стандартной ядерной вместо обычной третьей ступени космической ракеты-носителя «Сатурн-5» (Проект «Аро11о-Х») в случае полета космонавтов с высадкой на Луне полезный груз может быть увеличен на 65-100 %, а к Марсу может быть выведен полезный груз в 26 тонн. Для пилотируемого полета на Марс, практически неосуществимого с помощью современных химических ракет, предполагалось использовать пять стандартных ядерных ступеней: связку из трех таких ступеней — в качестве первой ступени трехступенчатой ракеты-носителя, и по одной такой же ступени — для второй и третьей ступеней. Сборка подобной ядерной ракеты должна была производиться на околоземной орбите. Сам полет к Марсу мог состояться уже в 1985 году. Другой проект межпланетного космического корабля для пилотируемого полета на Марс с использованием «стандартных» ядерных ступеней «НЕРВА-2» представлял собой трехступенчатую ракету, которая в отличие от первой не нуждалась в повторном запуске какого-либо из установленных на ней ядерных ракетных двигателей: когда двигатели отрабатывали свое, их должны были отделить от корабля. Все эти амбициозные планы остались на бумаге. После того как Америка выиграла «лунную гонку», интерес к перспективным исследованиям в области пилотируемой космонавтики стал быстро угасать. Таких денег, которые в свое время были выделены на программу «Аполлон», в казне Соединенных Штатов больше не нашлось, к тому же следовало решать текущие задачи по освоению околоземного пространства, и к началу 70-х годов программа по созданию ЯРД типа «НЕРВА» была закрыта. Советские ядерные двигатели В Советском Союзе работы над ядерными ракетными двигателями начались в середине 50-х годов. В НИИ-1 (научный руководитель — Мстислав Келдыш) инициатором и руководителем работ по ЯРД был Виталий Иевлев. В 1957 году он сделал по этой теме сообщение Игорю Курчатову, Анатолию Александрову и Александру Лейпунскому. Это были люди действия, имевшие возможность принимать решения, не ожидая указаний сверху. По их инициативе на Семипалатинском ядерном полигоне в небывало короткий срок был сооружен уникальный графитовый реактор. Первые успехи подтолкнули к следующим шагам по созданию ЯРД. Исследовательские работы по этой теме были начаты в Институте атомной энергии у Курчатова, в ОКБ-456 у Глушко, в НИИ-1 у Келдыша и в ОКБ-670 у Бондарюка. 30 июня 1958 года появилось первое постановление ЦК КПСС и Совета Министров о разработке тяжелой ракеты, использующей ЯРД. Этим же постановлением предусматривалась разработка тяжелых ракет с использованием ЖРД на криогенных высокоэнергетических компонентах — кислороде и водороде. В подготовке постановления активно участвовали Курчатов, Королев, Келдыш и Глушко. В ОКБ-1 Королев поручил исследовать возможность создания ракеты с использованием ЯРД Василию Мишину, Сергею Крюкову и Михаилу Мельникову. В течение 1959 года проводились расчеты, прикидки и компоновки различных вариантов тяжелых ракет-носителей с кислородно-водородным ЖРД на первой ступени и с ЯРД на второй ступени. Постановление от 30 июня 1958 года узаконило уже ведшиеся работы. Эскизный проект ракеты на основе использования ЯРД был в ОКБ-1 разработан и утвержден Королевым 30 декабря 1959 года. Проект предусматривал использование в качестве первой ступени ракеты шести блоков первой ступени ракеты «Р-7». Вторая ступень — центральный блок был по существу ядерным реактором. В ядерном реакторе рабочее тело подогревалось до температуры свыше 3000 К. В качестве рабочего тела ОКБ-456 предлагало использовать аммиак, а ОКБ-670 — смесь аммиака со спиртом. Сам двигатель представлял собой четыре сопла, через которые и вылетали струи раскаленных ядерной реакцией газов. В эскизном проекте были обстоятельно рассмотрены несколько вариантов ракет с ЯРД. Самой впечатляющей была «суперракета» длиной 64 метра, диаметром 9 метров, со стартовой массой 2000 тонн и массой полезного груза до 150 тонн на орбите ИСЗ. На первой ступени этой «суперракеты» предлагалось установить такое число ЖРД, чтобы получить общую стартовую тягу в 3000 тонн. Глушко предлагал для этого разработать ЖРД на токсичных высококипящих компонентах, но Королев и Мишин этот вариант категорически отвергли, и в проекте предусматривались только кислородно-керосиновые ЖРД Николая Кузнецова. У него пока в начальной стадии разработки находился двигатель «НК-9» для первой ступени глобальной ракеты «ГР-1» — тягой до 60 тонн. Таких двигателей для первой ступени ракеты с ЯРД требовалось 50 (!). Одно это делало проект ядерной «суперракеты» малореальным. Эскизным проектом для начала предлагалась комбинированная ракета со стартовой массой 850–880 тонн, выводящая на орбиту высотой 300 километров полезный груз 35–40 тонн. Первая ступень ракеты принималась аналогичной блочной конструкции ракеты «Р-7» и набиралась из шести блоков с ЖРД. Центральный блок был ядерно-химической ракетой. Своим чередом шли и работы над ЯРД. Уже самый первый анализ показал, что среди множества возможных схем космических ядерных энергодвигательных установок наибольшие перспективы имеют три: с твердофазным ядерным реактором, с газофазным ядерным реактором, электроядерные ракетные ЭДУ. Схемы отличались принципиально; по каждой из них наметили несколько вариантов для развертывания теоретических и экспериментальных работ. Принципы работы ЯРД не вызывали сомнений. Однако конструктивное выполнение (и характеристики) его во многом зависели от «сердца» двигателя — ядерного реактора и определялись прежде всего его «начинкой» — активной зоной. Поддержанный постановлениями правительства, НИИ-1 строил электродуговые стенды, неизменно поражавшие воображение, — десятки баллонов от 6 до 8 метров высотой, громадные горизонтальные камеры мощностью свыше 80 кВт, броневые стекла в боксах. Участников совещаний вдохновляли красочные плакаты со схемами полетов к Луне, Марсу и звездам. Предполагалось, что в процессе создания и испытаний ЯРД будут решены вопросы конструкторского, технологического, физического плана. Летом 1959 года сотрудники НИИ-1 Виталий Иевлев и Юрий Трескин доложили о постановке эксперимента на реакторе «ИГР», первый запуск которого состоялся в 1961 году. 1 июля 1965 году был рассмотрен эскизный проект реактора «ИР-20-100» для будущего ядерного двигателя «РД-0410». Кульминацией стал выпуск техпроекта тепловыделяющих сборок «ИР-100» (1967 год), состоящих из 100 стержней. «Ракетная» часть «РД-0410» была разработана в воронежском Конструкторском бюро химической автоматики (КБХА), «реакторная» (нейтронный реактор и вопросы радиационной безопасности) — Институтом физики и энергии (Обнинск) и Курчатовским институтом атомной энергии. Согласно принятой концепции жидкие водород и присадкагексан подавались с помощью турбонасосного агрегата в гетерогенный реактор на тепловых нейтронах с тепловыделяющей сборкой, окруженной замедлителем из гидрида циркония. Их оболочки охлаждались водородом. Отражатель имел приводы для поворота поглотительных элементов (цилиндров из карбида бора). За пять лет, с 1966 по 1971 год, были созданы основы технологии реакторов-двигателей, а еще через несколько лет была введена в действие мощная экспериментальная база под названием «экспедиция № 10» (впоследствии — опытная экспедиция НПО «Луч» на Семипалатинском ядерном полигоне). Особые трудности встретились при испытаниях. Обычные стенды для запуска полномасштабного ЯРД использовать было невозможно из-за радиации. Испытания реактора решили проводить на атомном полигоне в Семипалатинске, а «ракетной части» — в НИИхиммаш (Загорск, ныне — Сергиев Посад). Для изучения внутрикамерных процессов было выполнено более 250 испытаний на 30 «холодных двигателях» (без реактора). В качестве модельного нагревательного элемента использовалась камера сгорания кислородно-водородного ЖРД конструкции Исаева. Максимальное время наработки составило 13000 секунд при объявленном ресурсе в 3600 секунд. В процессе испытаний удались максимальная тяга в 3528 килограммов и скорость истечения — 9000 м/с. Для испытаний реактора на Семипалатинском полигоне были построены две специальные шахты с подземными служебными помещениями. Одна из шахт соединялась с подземным резервуаром для сжатого газообразного водорода. От использования жидкого водорода отказались из финансовых соображений. Перед экспериментальным запуском реактор опускался в шахту с помощью установленного на поверхности козлового крана. После запуска реактора водород поступал снизу в «котел», раскалялся до 3000 °К и огненной струей вырывался из шахты наружу. Несмотря на незначительную радиоактивность истекающих газов, в течение суток находиться снаружи в радиусе полутора километров от места испытаний не разрешалось. К самой же шахте нельзя было подходить в течение месяца. Полуторакилометровый подземный тоннель вел из безопасной зоны сначала к одному бункеру, а из него — к другому, находящемуся возле шахт. По этим своеобразным «коридорам» и передвигались специалисты. Результаты экспериментов, проведенных с реактором в 1978–1981 годах, подтвердили правильность конструктивных решений. В принципе ЯРД был создан. Оставалось соединить две части и провести комплексные испытания. Однако двигатель остался невостребованным. Экспедицию на Луну и Марс отменили, а использовать «РД-0410» на околоземных орбитах было накладно, да и просто опасно. Электротермические двигатели Нам уже известно, что одним из способов увеличения эффективности двигателей для космических кораблей является повышение температуры (а значит и скорости) истекающих газов. Но эту температуру можно поднимать не только с помощью химической реакции горения или посредством утилизации энергии радиоактивного распада — другим мощным источником тепла может служить электричество. Идея электротермического ракетного двигателя обсуждается уже довольно давно. Еще в 1928 году, на самой заре развития реактивной техники, в нашей стране был выдвинут изобретательский проект такого двигателя. По этому проекту через тонкие металлические проволочки или струйки электропроводящей жидкости, находящиеся в камере сгорания, должны пропускаться с заданной частотой кратковременные мощные импульсы электрического тока. Начиная с мая 1929 года, в специально созданной группе электрических и жидкостных ракетных двигателей Газодинамической лаборатории (ГДЛ) в Ленинграде велись теоретические и экспериментальные исследования электротепловых двигателей, использующих явление «электрического взрыва». Работами руководил хорошо нам знакомый Валентин Петрович Глушко. Через четыре года опыты продолжались уже с камерой, снабженной соплом. В результате разрядов тока происходил взрыв проводников с разогреванием образующихся газов до весьма высокой температуры — порядка 1 миллиона градусов, вследствие чего раскаленные продукты взрыва вытекали через сопло с огромной скоростью. После целой серии опытов сотрудники ГДЛ установили, что идеальным рабочим веществом для таких двигателей являются насыщенные водородом металлы: например, железо или палладий. При высокой температуре взрыва водород выделяется с поглощением части энергии; при охлаждении же продуктов он, воссоединяясь, выделяет поглощенную энергию, что ведет к общему увеличению к. п. д. Однако развитие ракетных двигателей пошло, как известно, по другому направлению, и если электрические методы нагрева и получили некоторое применение в космической технике, то лишь для различных вспомогательных нужд: например, в электрозапальных устройствах, служащих для воспламенения топлива при запуске двигателя. Интерес к электротермическим двигателям вновь проявился лишь в начале 70-х годов, когда стали очевидны принципиальные ограничения термохимических двигателей в отношении тяги. В первую очередь вспомнили о схеме ГДЛ. Опыты с подобными двигателями проводились как у нас, так и в за рубежом. В качестве рабочего вещества применялись проволочки диаметром в 1 миллиметр и длиной примерно 6,5 миллиметра из алюминия, железа, меди, золота, серебра, вольфрама и ряда других металлов. Внезапный разряд батареи конденсаторов, заряженных до напряжения 10–20 киловольт, через эти проволочки вызывал мгновенное возникновение в них тока силой в несколько тысяч ампер, что приводило к взрывному испарению материала проволочек. Как показали измерения, при этом развивалась температура выше 100 000 °C, а скорость истечения превышала 10 000 м/с с возможностью ее увеличения до 50 000 м/с! Но если «электрический взрыв» представляет собой довольно экзотический метод нагрева, то хорошо известны другие способы, с помощью которых электрический ток используется в технике и быту для нагрева различных веществ. Пожалуй, наиболее прост и известен метод конвективного нагрева жидкостей и газов с помощью электрических элементов сопротивления; ведь именно этот так называемый омический нагрев служит в бесчисленных электронагревателях самой различной мощности, начиная с обыкновенного утюга. Нагревательным элементом здесь служит металлическая трубка, проволока или пластина; их электрическое (омическое) сопротивление приводит к тому, что при течении тока они нагреваются — электрическая энергия переходит в тепловую. А затем получаемое тепло сообщается омывающему элемент газу или жидкости. Создать электротермический двигатель на основе этого физического явления просто: достаточно в камере такого двигателя разместить электрический нагревательный элемент. Правда, нагрев рабочего вещества будет ограничен допустимой температурой нагревательного элемента примерно так же, как в твердофазном ядерном реакторе, но зато двигатель будет сравнительно простым, небольшим и легким. За рубежом такие двигатели исследуются, они получили там название «резистоджет», что в переводе с английского звучит примерно как «ракетный двигатель на сопротивлении». Нагревательный элемент «резистоджета» изготовляется из жароупорного металла (обычно из вольфрама, рения или их сплавов) и может нагреваться до 2650–2750°К. При удачной конструкции двигателя температура рабочего вещества лишь немногим меньше этой. Выгоднее всего, конечно, применять в качестве рабочего вещества водород, но используются также аммиак и другие вещества В случае водорода скорость истечения может достигать 10 000-11 000 м/с. Один из двигателей типа «резистоджет» с многотрубчатым вольфрамовым теплообменником был разработан американской фирмой «Марквардт» («Marquardt») для использования в системах ориентации и стабилизации космических летательных аппаратов, в частности обитаемой орбитальной лаборатории «MORL», конструкцию которой мы обсуждали в главе 17. Электрическая мощность этого двигателя равна 3 кВт, концентрические трубки вольфрамового теплообменника имеют толщину всего ОД миллиметра. В ходе 25-часовых испытаний двигателя была получена скорость истечения 8400 м/с при к. п. д. 79 % и тяге двигателя 66,5 грамма. По другому предложению фирмы, на этой же орбитальной лаборатории могут быть установлены 1624 двигателя «резистоджет» тягой по 4,5 грамма, рабочим веществом для которых должны служить отходы жизнедеятельности космонавтов! Фирма «Авко» («Avco») также разрабатывала двигатель «резистоджет» аналогичного назначения для системы стабилизации на орбите синхронного искусственного спутника Земли «ATS» весом около 450 килограммов. Двигатель мощностью всего примерно 7,5 Вт имеет диаметр 102 миллиметра, длину 280 миллиметров и вес 3,2 килограмма, он работает на аммиаке; его две независимо работающие тяговые камеры (движителя) диаметром 32 миллиметра развивают очень малую тягу 50 миллиграммов и 5 миллиграммов, они управляются клапанами, электрически связанными с электронным командным блоком. Двигатель подобного типа был установлен на спутнике «ATS-B», выведенном на орбиту в декабре 1966 года. А в июле и ноябре 1967 года были выведены на орбиту экспериментальные спутники «LES» и «ATS-3», также оборудованные двигателями типа «резистоджет». Сообщается и о ряде других экспериментальных электротермических двигателей: мощностью 30 кВт при скорости истечения 8600 м/с, мощностью 10 Вт с тягой порядка 0,5 грамма и так далее. Первый из двигателей «резистоджет» нашел применение в космосе в системе ориентации военного спутника «Вела-3», запущенного в июле 1965 года. Мощность этого двигателя равна 90 Вт, тяга — 19 граммов. 19 сентября 1965 года с его помощью был осуществлен первый маневр в космосе. В мае 1967 года двигатель «резистоджет» с тремя соплами обеспечивал ориентацию и маневрирование усовершенствованного спутника «Вела»; два таких спутника были запущены за месяц до этого, на каждом из них был установлен многосопловой двигатель «резистоджет» тягой каждого сопла 8,5 грамма. Двигатель весом 150 граммов работал на азоте. Другой двигатель (фирмы «Дженерал Электрик») пульсирующего типа тягой 0,225 грамма прошел в 19661967 годы испытания в течение более 10 000 часов. Звездолет с термоядерным двигателем Как известно, атомная энергия может выделяться в результате ядерных реакций двух типов, диаметрально противоположных по характеру: в одном случае в результате реакции образуются более простые, в другом — более сложные атомные ядра, хотя в обеих реакциях изменение энергии внутриядерной связи оказывается качественно одним и тем же — она выделяется. Реакции, в ходе которых происходит слияние простых атомных ядер в более сложные, то есть синтез ядер, носят название термоядерных. Именно они являются источником колоссальной энергии, излучаемой звездами, в том числе и нашим Солнцем. В этой звездной реакции четыре ядра водорода, сливаясь, образуют одно ядро атома гелия. В этом случае выделяется огромная энергия. Однако науке удалось пока искусственно осуществить только термоядерные реакции взрывного характера — они используются в так называемом водородном атомном оружии. В направлении осуществления управляемых термоядерных реакций, которые могли бы быть положены в основу ядерной энергетики, ведутся интенсивные исследования. Как известно, в основу всех этих исследований положена блестящая мысль советских физиков Андрея Сахарова и Игоря Тамма, высказанная ими еще в 1960 году, об использовании так называемой «магнитной бутылки» для содержания в ней раскаленной плазмы, в которой должна идти термоядерная реакция. Чтобы эта реакция пошла, плазму нужно нагреть до немыслимой температуры в сотни миллионов градусов, а затем удержать ее в этом состоянии заметное время; изоляция стенок реактора от контакта с плазмой (такой контакт смертелен не только для стенок, но и для самой реакции, что гораздо хуже) может быть осуществлена только с помощью мощного магнитного поля. Кстати сказать, для создания такого поля придется, вероятно, использовать электромагниты со сверхпроводящей обмоткой, например из ванадийгаллиевого сплава, так как иначе затрата электроэнергии будет чрезмерно большой. Главная трудность на пути практической реализации этой смелой идеи связана с феноменальной неустойчивостью плазменного шнура, и именно в этом направлении ведутся основные исследования российских и зарубежных ученых. Нашим ученым удалось получить «долгоживущую» плазму температурой в несколько миллионов градусов, что позволяет надеяться на успешное решение в будущем этой сложнейшей научной и инженерной задачи, имеющей столь большое значение для судеб человечества, что его трудно переоценить. Однако пока эта задача не решена, и космонавтика ограничивается лишь различными теоретическими исследованиями и предварительными проектными разработками термоядерных ракет, показывающими, сколь важна может быть их роль в будущем освоении космического пространства. Науке известны различные типы термоядерных реакций, которые могли бы найти применение в космических термоядерных ракетных двигателях будущего, например реакции синтеза ядер дейтерия, дейтерия и трития, дейтерия и гелия-3. Считается, что наиболее подходящей для этой цели является последняя реакция, поскольку она не связана с излучением нейтронов и потому не требует особо тяжелой защитной экранировки реактора. Нагретое до огромных температур рабочее вещество должно вытекать в термоядерном ракетном двигателе из реактора через «горлышко» магнитной бутылки, создавая реактивную струю. В принципе просто, но о конструкции такого двигателя говорить пока рано, хотя на страницах зарубежной печати можно найти различные более или менее детально проработанные проекты подобного рода. Предварительные исследования показывают, что подобный двигатель должен обладать совершенно уникальными характеристиками: при тяге 180 тонн и массе около 3 тонн (примерно эти параметры характерны для водородно-кислородного двигателя американской системы «Спейс Шаттл») он будет развивать скорость истечения 180 км/с. Заметим для сравнения, что удельный импульс ядерных ракетных двигателей с твердой активной зоной и водородом в качестве рабочего тела не превышает 9000 м/с, а с газообразной (плазменной) активной зоной — 25000 м/с. Итак, двигатели, созданные на базе термоядерных реакторов, являются принципиально новым шагом на пути развития космических тяговых систем. Эти двигатели позволят человеку, в подлинном смысле слова, стать хозяином Солнечной системы, достигнуть ее самых удаленных планет (Урана, Нептуна, Плутона), совершить полеты за пределы эклиптики, организовать дальние экспедиции в межзвездное пространство, наладить постоянную транспортную связь между планетами земной группы (Марс, Земля, Венера), организовать посещение спутников Юпитера, Сатурна, а главное — перейти к созданию первых тяговых систем, характерных для космических цивилизаций. Фотонная ракета Другим способом создания тяги является фотонная ракета. Принцип ее работы довольно прост. Если на космическом корабле находится мощный источник световых (или каких-либо иных электромагнитных) волн, то, посылая их в одну сторону, можно, как и в случае частиц вещества, создать силу, движущую корабль в другую — противоположную сторону. Эта движущая сила, или тяга, является реакцией фотонов, выбрасываемых источником света на корабле, точно так же как возникает подобная реакция при отражении солнечных лучей «зеркальным парусом». Ничем не отличалась бы она по существу и от тяги любого реактивного двигателя, за исключением того, что, как указывалось выше, в них реактивная тяга создается вытекающими частицами вещества, а в нашем случае такими же «вытекающими» фотонами. Этот двигатель отличается от традиционных еще и тем, что скорость «истечения» из него «рабочего вещества» значительно больше. Мало того, это вообще наибольшая возможная скорость «истечения», ибо не существует в природе скорости, большей скорости света. Таким образом, наш фотонный двигатель является как бы идеальным, предельно возможным. К сожалению, фотонные ракеты могут быть применены только для полетов на очень большие расстояния — например к другим звездам. Их тяга так мала, что только в очень длительном и, следовательно, дальнем полете фотонная ракета может достичь достаточно большой скорости полета. Понятно, что излучатель фотонного двигателя должен отличаться от обычного прожектора не только размерами. Установите сколь угодно большой прожектор или сколько угодно много таких прожекторов на космической ракете, и вы не получите нужного результата — тяга такого фотонного двигателя будет ничтожно малой по сравнению с его массой. Чтобы увеличить тягу, нужно излучать гораздо больше энергии, чем это в состоянии сделать простой прожектор. Ведь энергия, излучаемая раскаленной поверхностью, зависит от температуры поверхности. Но как бы ни была раскалена твердая поверхность, ее температура будет во всех случаях значительно меньше температуры поверхности Солнца (она равна, как известно, примерно 5500 °C). Лучше подойдут, естественно, раскаленные газовые и в особенности плазменные излучатели (так, Зенгер предложил плазменный излучатель с температурой 150 000 °К). Однако тут возникают другие трудности, помимо связанных с устройством и эксплуатацией высокотемпературных источников излучения. С ростом температуры изменяется (увеличивается) частота излучения, то есть характер излучаемых квантов энергии. Увеличение энергии кванта связано с уменьшением его длины волны (ведь квант — это своеобразная частица, частица-волна), то есть излучение становится все более коротковолновым. Возрастает число квантов ультрафиолетового света и рентгеновского излучения, становящегося все более жестким. Когда температура становится столь большой, что начинают идти ядерные реакции, то появляется и гамма-излучение. Но отражение таких коротковолновых лучей непростая задача: эти лучи, как известно, с легкостью проходят через вещество. Поэтому оказывается необходимым создание принципиально иных «зеркал» вместо обычного рефлектора В частности, для этого предложены такие необычные методы, как использование «электронных» или «плазменных зеркал» в виде стабилизованного плотного облака электронов или плазмы. Известно ведь, что коротковолновые лучи постепенно преломляются и наконец отражаются от электропроводящей среды. Однако чтобы создать такое электронное или плазменное облако, нужны колоссальные давления, наподобие возникающих при атомном взрыве. Должно быть решено немало и других сложнейших проблем. Так, например, откуда звездолет будет черпать энергию, необходимую для питания фотонного двигателя. Совершенно ясно, что химическая энергия для этого непригодна Но даже в миллионы раз большая энергия деления атомов урана в этом случае также недостаточна С помощью энергии термоядерных реакций можно было бы, пожалуй, осуществить простейший из межзвездных перелетов. Но только полное использование потенциальной энергии вещества в состоянии решить проблему межзвездного полета фотонной ракеты. Но как можно себе представить высвобождение всей энергии, заключенной в веществе? Известны ли науке методы такого высвобождения? Есть по крайней мере один такой путь, уже освоенный наукой. Он связан с явлением «аннигиляции» вещества, то есть с процессом столкновения элементарной частицы вещества, например электрона, с ее так называемой античастицей, в данном случае позитроном. При таком столкновении обе частицы «аннигилируют» — исчезают с одновременным выделением энергии, масса которой в точности равна массе исчезнувших частиц. Электрон и позитрон почти во всем одинаковы, за исключением знака электрического заряда, в других случаях частица и античастица различаются и иными свойствами. Предполагается, что может существовать, или действительно существует, вещество (его называют иногда антивеществом), состоящее из античастиц, которое по всем своим физико-химическим свойствам не отличается от обычного вещества. Выделение энергии в процессах аннигиляции связано с рождением фотонов большей или меньшей энергии. Вот почему идеальным звездолетом была бы аннигиляционная фотонная ракета с полным выделением в ней потенциальной (иногда ее называют «эйнштейновской») энергии вещества. В такой ракете в фокусе отражателя должен находиться «аннигилятор», в который из двух различных баков поступали бы вещество и антивещество. Образующийся в процессе аннигиляции мощнейший поток фотонов или других электромагнитных квантов, отброшенный назад отражателем, и создавал бы необходимую для полета тягу. Легко видеть, что в настоящее время речь может идти лишь о теоретической идее фотонной ракеты. Ведь пока еще никто не видел антивещества, неизвестно, как его хранить и подавать в аннигилятор, неизвестно, каким должен быть отражатель фотонов и так далее. Несмотря на обилие принципиальных неясностей, связанных с реализацией идеи фотонной ракеты, сама эта идея вызывает большой интерес. Это не случайно, ведь такая ракета — идеальное средство для межзвездных перелетов. Но даже для фотонной ракеты подобный перелет связан с колоссальной затратой «рабочего вещества». Так, для полета продолжительностью 30–40 лет в фотонном двигателе придется «сжечь» в световую энергию примерно 10 миллиардов тонн вещества! Выделившейся при этом энергии хватило бы для расплавления оболочки земного шара на глубину в сотни километров. Не удивительно, что иногда предлагают, чтобы фотонный звездолет, отправляясь в свой далекий путь, захватывал с собой в качестве «топлива» какой-нибудь астероид. Но так ли уж обязательно захватывать с собой все запасы фотонного «топлива»? Неужели нельзя заправляться в полете? Отвечая на этот вопрос, мы вплотную подходим к вопросу «внешних ресурсов». К вопросу о внешних ресурсах К «внешним», то есть не запасаемым на борту летательного аппарата, ресурсам можно отнести электростатическое и магнитное поля Земли, различные виды энергии атмосферы (механическую, тепловую, химическую), энергию солнечного излучения, а также термоядерную энергию, сосредоточенную в космическом водороде. Всю эту энергию вполне возможно извлечь, преобразовать и использовать для перемещения космических аппаратов. Ближайшим к нам «внешним ресурсом», который может быть использован как источник дешевой (практически дармовой) энергии, является атмосфера. И по сегодняшний день конструкторы космической техники воспринимают атмосферу как личного врага, накладывающего своим аэродинамическим сопротивлением известные ограничения. И в то же время путь, который позволит сделать из врага союзника, хорошо известен. Это — замена первой стартовой ступени на аэростатическую или авиационную систему. Собственно, обсуждению преимуществ таких систем перед традиционными и посвящена настоящая книга, и в предыдущих главах я уже показывал, сколько выгод дает их применение, однако развитие космических технологий идет пока в другом направлении, и способы использования внешнего ресурса атмосферы должны опираться на существующий задел. Например, предлагается устанавливать на первых ступенях ракет-носителей воздушно-реактивные двигатели — турбореактивные и прямоточные. Наиболее пригодны для подобного использования прямоточные двигатели с так называемым сверхзвуковым сгоранием (в этих двигателях топливо сгорает в воздушном потоке, движущемся со сверхзвуковой скоростью, что позволяет резко уменьшить размеры и вес двигателя по сравнению с обычными прямоточными двигателями, внутри которых воздушный поток до сгорания затормаживается до дозвуковой скорости) и различные гиперзвуковые прямоточные двигатели. Помимо выигрыша в величине удельного импульса, применение совершенных прямоточных двигателей может привести также к значительному уменьшению веса ракеты. Особенно выгодно применение прямоточных двигателей на возвращаемых с целью повторного использования ступенях ракетыносителя. По одному из подобных проектов в США предполагалось создать ступень тяжелой космической ракеты «Арктур», снабженную турбопрямоточными двигателями и весящую около 550 тонн. Эта ступень должна разгонять ракету общим весом около 1650 тонн до скорости 1200 м/с. По расчетам, ракета сможет обеспечить плавную посадку на Луну груза весом до 27 тонн. Разрабатываются проекты установки на подобных ступенях и ракетно-прямоточных двигателей, в которых обогащенные горючим продукты сгорания ракетного двигателя будут вытекать в прямоточный двигатель, где произойдет дожигание газов с использованием атмосферного кислорода. Для облегчения засасывания атмосферного воздуха в этот двигатель предполагается установить на ракете специальное устройство — эжектор, в котором используется подсасывающее действие высокоскоростной реактивной струи, вытекающей из ракетного двигателя. Подсасывание воздуха в реактивную струю может привести к увеличению удельного импульса даже при отсутствии сгорания за ракетным двигателем и только за счет увеличения тяги из-за роста массы газов в реактивной струе. Использование атмосферного кислорода представляется некоторым авторам и иначе. По их мнению, с помощью специального летательного аппарата с воздушно-реактивными двигателями, совершающего длительные полеты у границ плотной атмосферы (то есть на высотах порядка 80-110 километров), можно осуществить конденсацию и накопление кислорода из атмосферы. Эта возможность связана с тем, что, как показывает расчет, мощность двигателей на таких высотах оказывается достаточной и для преодоления лобового сопротивления аппарата, и для осуществления процесса сжижения кислорода. Считается, что после накопления кислорода в количестве, равном весу летательного аппарата, может быть осуществлена дальнейшая фаза космического полета с помощью жидкостного ракетного двигателя, работающего на жидком водороде. Может быть организована и передача жидкого кислорода другим космическим ракетам путем заправки в полете. Еще более радикальным является другое предложение об использовании ресурса верхних слоев земной атмосферы как практически неисчерпаемой кладовой активных химических веществ, которые могут служить превосходным ракетным топливом. Эти вещества образуются в результате взаимодействия атмосферы с коротковолновым излучением Солнца, являясь продуктами фотохимических реакций, идущих под действием этого излучения. Как было подтверждено с помощью ракетных исследований ионосферы, на высотах более 80-100 километров молекулы кислорода, а затем и азота, распадаются на составляющие их атомы. Такой распад, требующий затраты значительных количеств тепла, идет под действием жесткого коротковолнового излучения Солнца. Образующиеся таким образом за счет аккумулирования солнечной энергии атомарные газы, кислород и азот, весьма активны химически и стремятся снова к слиянию в молекулы с выделением затраченной на диссоциацию энергии. Произведенные расчеты показывают, что количество запасенной таким образом в атмосфере химической энергии превосходит энергию всех известных запасов химического топлива на Земле. В 1956 году в США были предприняты первые попытки экспериментального доказательства возможности ускорения процесса рекомбинации атомарных газов атмосферы. Для этого с геофизической ракеты «Аэроби», запущенной в ионосферу, на высоте около 90 километров было выброшено примерно 9 килограммов вещества, являющегося катализатором, ускоряющим реакцию рекомбинации атомарного кислорода. Немедленно вслед за этим в ночном небе образовалось быстрорастущее и яркое зеленовато-белое облако — начался бурный процесс рекомбинации. Неудивительно возникновение мысли о возможности осуществления подобного каталитического процесса рекомбинации внутри двигателя ракеты, с тем чтобы использовать выделяющуюся при этом энергию для создания движущей реактивной струи. Подобные предложения неоднократно высказывались как у нас в стране, так и за рубежом. Такие гипотетические двигатели называются «хемосферными» (поскольку зону ионосферы с максимальной интенсивностью процесса диссоциации газов называют хемосферой), или «ионосферными». Принципиальное устройство ионосферного двигателя весьма просто. Он напоминает собой обычный сверхзвуковой прямоточный воздушно-реактивный двигатель — спереди через воздухозаборное отверстие в двигатель поступает атмосферный воздух с высокой концентрацией атомарных газов, сзади через сопло вытекает раскаленная струя рекомбинировавших молекул кислорода и азота. Место камеры сгорания этого двигателя, работающего без какого бы то ни было топлива, занимает рабочая камера рекомбинации, в которой помещен катализатор. В печати указывается, что одним из наилучших возможных катализаторов является золото — тонким слоем оно может покрывать стенки камеры и перегораживающую ее решетку. Впрочем, катализатор может оказаться и вовсе не нужным, так как в результате сжатия набегающего потока во входном воздухозаборнике двигателя температура и давление в нем повысятся настолько, что рекомбинация пойдет сама по себе. Однако, несмотря на внешнюю заманчивость этой идеи «бесплатного» энергопитания силовой установки летательного аппарата, практическая ее реализация весьма сомнительна. Действительно, при полете с очень большими, например орбитальными, скоростями такой двигатель будет обладать чрезмерно большим лобовым сопротивлением, в несколько раз превосходящим развиваемую им полезную тягу. Чтобы тяга превосходила сопротивление, скорость полета должна быть относительно небольшой, примерно в 2–4 раза больше скорости звука, но тогда возникают трудности, связанные с созданием необходимой подъемной силы, то есть удержанием летательного аппарата на данной высоте. Другой внешний ресурс атмосферы — это электрический заряд. Известно, что в самых верхних слоях частицы воздуха ионизованы, они уже не нейтральны, как у Земли. Это наводит на мысль о том, что при полете в ионосфере можно использовать ионизованные частицы в качестве рабочего вещества электроракетных двигателей. Точнее говоря, это будут уже не электроракетные, а своеобразные электропрямоточные или ионно-прямоточные двигатели. В них будут засасываться из ионосферы заряженные частицы, точно так же как в тяговую камеру ионного ракетного двигателя поступают ионы цезия из ионного источника. Затем эти частицы будут обычным для ионных двигателей способом ускоряться и вытекать позади, создавая реактивную тягу. Конечно же, для такого разгона снова понадобится электроэнергия. Экономия будет лишь за счет энергии, расходуемой на ионизацию рабочего вещества в обычных ионных двигателях. Доля этой энергии в общей затрате электроэнергии в ионном двигателе обычно очень невелика, так что и экономия в энергии будет сравнительно небольшой, но дело и не в ней. Главное в том, что рабочее вещество в этом случае уже не находится на борту летательного аппарата. Однако такие аппараты смогут летать лишь на относительно небольших высотах — в разреженной атмосфере, но не в космосе. Правда, в космосе также встречаются заряженные частицы вещества — например, в космическом излучении. Испускает подобные корпускулярные потоки и Солнце. Но их использование еще более затруднительно, хотя принципиально и возможно. Однако электромагнитная энергия космоса вовсе не ограничивается корпускулярным излучением Солнца и звезд. Гораздо больше по величине другие виды этой энергии. В частности, известно, что в космосе существуют весьма мощные локальные магнитные поля. Ученые связывают с воздействием этих полей природу основной части космического излучения. Предполагают, что заряженные частицы — главным образом протоны, а также ядра атомов гелия и в небольшом числе других, более тяжелых атомов, — выброшенные в космос звездами или в результате иных процессов, затем разгоняются в космических магнитных полях. Так в гигантских природных электромагнитных ускорителях рождаются космические лучи с их колоссальной энергией, в миллиарды раз большей, чем в самых мощных циклотронах современных лабораторий. Нельзя ли воспользоваться энергией космических магнитных полей для того, чтобы вот так же разогнать до нужных огромных скоростей межпланетный корабль? Такая идея высказывалась рядом ученых, у нас в стране — профессором Г. И. Покровским. Однако практически для реализации такой идеи нужно прежде всего найти мощные магнитные поля в космосе, узнать их расположение, конфигурацию, интенсивность, чтобы умело управлять разгоном корабля. Очевидно, что и на этот метод использования электромагнитной энергии космоса вряд ли можно всерьез рассчитывать в ближайшее время. Правда, одно космическое магнитное поле нам хорошо известно, и его использование кажется вполне возможным и даже в ряде случаев выгодным. Речь идет о геомагнитном поле. В свое время в США активно обсуждалась схема геомагнитного движителя, который позволяет использовать геомагнитное поле и разреженную плазму, заполняющую околоземное пространство в ионосфере, для создания полезной движущей силы. Движитель представляет собой по существу тонкую металлическую (из алюминия, магния, бериллия или лития) проволоку очень большой длины (от 1 до 50 километров) с расположенными на ее концах контакторами; такое устройство движителя позволяет использовать его одновременно и для так называемой гравитационной ориентации в пространстве. Если электрический проводник движется с некоторой скоростью поперек силовых линий магнитного поля в заряженной среде — плазме, то в нем, очевидно, начинает течь (индуцируется) ток; проводник вместе с плазмой образует своеобразный замкнутый контур. Но взаимодействие тока с магнитным полем связано с возникновением пондеромоторной силы, которая стремится уменьшить скорость проводника, тормозит его (если проводник перпендикулярен скорости). По существу, конечно, эта тормозящая сила представляет собой также силу реакции отбрасываемой плазмы — в принципе, почти такую же, как в случае авторотирующего воздушного винта самолета. И если торможение винтом оказывается весьма полезным в авиации (например, при посадке самолета), то «магнитное торможение» в космосе также может оказаться полезным для различных маневров по изменению орбиты и положения спутника. Расчеты показывают, что такое торможение является самым эффективным, ведь оно не требует затрат рабочего вещества. Но если вместо торможения нужно получить ускоряющую силу, то ток в проводнике должен возбуждаться искусственно, для чего нужен специальный электрический генератор. Кстати сказать, на режиме торможения этот генератор сможет уже не расходовать электрическую энергию, а вырабатывать ее, например, для питания бортовых систем спутника. Применение геомагнитного движителя оказывается тем выгоднее, чем больше длительность полета и меньше его высота — на высотах более 10 000 километров из-за ослабления геомагнитного поля он уже практически невыгоден. Рассмотренные выше способы использования внешних ресурсов пригодны только для полетов в пределах Солнечной системы. Для межзвездных полетов они оказываются непригодными. Однако даже в межзвездном пространстве имеется готовый к употреблению ресурс. Это — межзвездный водород, который теоретически можно использовать в прямоточном термоядерном двигателе. Для предварительных расчетов можно принять, что межпланетная среда состоит из водорода, находящегося в молекулярном, атомарном и ионизованном состояниях. Таким образом, основой энергетического процесса двигателя можно считать получение на борту летательного аппарата термоядерной энергии, выделяемой в результате синтеза космического водорода. Итак, внешний вид космической ракеты с термоядерным прямоточным двигателем необычен: навстречу полету, на большое расстояние от корабля вытянулся ярко-фиолетовый ионизирующий луч, выходящий из передней точки заостренного центрального тела геометрического конусообразного массозаборника. Этот луч может быть пучком ускоренных электронов, гамма-излучением, рентгеновским или ультрафиолетовым излучением. Предназначен он для ионизации встречного (набегающего) потока водорода или, если применяется пучок электронов, для предварительной фокусировки (стягивания ближе к оси пучка) этого водорода за счет сил электростатического взаимодействия. По периметру геометрического массозаборника, имеющего довольно внушительные размеры (диаметр около 20 метров и длина около 25 метров), проложены в один-два слоя витки сверхпроводниковой катушки с током. Эта катушка представляет собой сложное инженерное сооружение. При ее работе на витки действуют огромные разрывающие усилия и силы, прижимающие витки друг к другу. Материал витков должен быть весьма прочен при сверхнизких (гелиевых) температурах, иметь малую плотность и допускать высокие значения плотности электрического тока. Конструкция витков должна предусматривать их интенсивное охлаждение жидким гелием (температура около 4°К), причем без выброса гелия в окружающее пространство. Как известно, гелий весьма текуч, он просачивается не только сквозь мельчайшие зазоры в арматуре, но и проникает буквально «сквозь стенки», даже металлические. В крайнем случае эта неизбежная потеря должна восполняться посредством отбора части гелия, получаемого от термоядерного синтеза. Только что описанная катушка нужна для формирования магнитного поля, фокусирующего набегающий поток. Ионизированные частицы внешнего набегающего потока (в основном протоны и электроны) встречаются с магнитным полем и начинают двигаться вдоль магнитных силовых линий, вращаясь вокруг них по спиралям. Поскольку магнитные силовые линии сходятся у входа в геометрический массозаборник, частицы фокусируются этой своеобразной магнитной воронкой. Оказывается, что подобный способ фокусирования набегающих частиц позволяет значительно увеличить эффективную площадь входа массозаборника Такое входное устройство даже при весьма незначительной плотности межпланетной среды (10 в минус семьнадцатой степени кг/м?) будет весьма эффективным. Например, при полете со скоростью 100 км/с за одну секунду в массозаборник поступит около одного килограмма водорода. Если предположить, что 75 % поступившего водорода прореагирует в термоядерном устройстве, то выделение энергии будет равно 5*10?? кДж/с. Поскольку доля энергии, требуемая для обеспечения внутренних потребностей корабля (в частности, для создания магнитного фокусирующего поля и работы бортовых систем), весьма незначительна, будем считать, что вся выделяющаяся энергия идет на создание тяги. Тяга прямоточного межпланетного двигателя создается за счет передачи выделившейся энергии, захваченной массозаборником, внешней массе. Численно тяга определяется приростом скорости захватываемого вещества, умноженным на массовый секундный расход этого вещества. Поскольку в нашем частном случае массовый секундный расход равен единице, тяга просто равна приращению скорости захватываемого потока, которое оказывается стократным. Соответственно, тяга такого идеального двигателя будет огромной — около 10?? килограммов! Рассмотренный в предыдущем разделе фотонный двигатель требует, как мы установили, размещения на борту космического корабля довольно большого запаса вещества и антивещества. Нельзя ли каким-то образом использовать с той же целью внешний ресурс космического пространства? Ученые подсчитали, что среди обычного водорода может находиться примерно 0,5?10 в минус седьмой степени часть антиводорода или антигелия. Соединяясь с обычным веществом, эти частицы дадут возможность захватывать массозаборником аннигиляционное горючее, каждый килограмм которого выделяет предельно возможную энергию примерно в 1000 раз больше энергии, выделяемой при синтезе водорода. Существуют гипотезы, что в различных районах нашей Галактики, а тем более в межгалактическом пространстве имеются целые области, состоящие в основном из антивещества (предполагают даже, что имеются антизвезды и антигалактики!). Тем не менее эти гипотезы пока подтверждения не нашли, и нам остается констатировать «печальный» факт — доля антивещества во внешней среде слишком мала, чтобы дать сколько-нибудь ощутимый вклад в энергетический выход от термоядерной реакции. Итак, на борту ракеты необходимо запасать антивещество, которое при достижении ею скорости полета 200 300 км/с с помощью термоядерного прямоточного двигателя следует использовать для получения «фотонной» тяги и дальнейшего разгона. Рассмотрим сначала проблемы получения и хранения антивещества. Об этих проблемах мало сказать, что они далеки от разрешения. Современное состояние физики таково, что они не могут даже быть поставлены на повестку дня. И тем не менее успехи современного физического эксперимента с каждым днем приближают нас к такой возможности. Начнем с того, что создание крупнейших ускорителей в Дубне и Серпухове позволило получить и исследовать свойства антипротона — ядра антиводорода, а затем ядер антидейтерия и антигелия. Еще пока нет установок для получения пучков этих «антиядер», но, когда они будут созданы, проблема получения упомянутых антиэлементов окажется, по-видимому, разрешимой. Дело в том, что оснастить полученные «антиядра» антиэлектронами (то есть позитронами — частицами, равными по массе электронам, но имеющими положительный заряд) значительно проще. Позитроны научились уже не только получать, но и накапливать в значительных количествах в так называемых «накопительных кольцах» — кольцевых магнитных системах, напоминающих ускорители. Смешивая «антиядра» и позитроны, можно получить нейтральную плазму антивещества. Как известно, плазма при магнитной изоляции может продолжительное (по физическим понятиям) время не вступать в контакты со стенками камер. К сожалению, такое антивещество еще не может считаться пригодным для хранения на борту ракеты. Необходимо разработать процесс охлаждения вплоть до отвердевания, скажем, антидейтерия. Твердый антидейтерий обладает достаточной плотностью для того, чтобы его можно было разместить в межзвездной ракете. Кроме того, контейнеры для его хранения не нужны. Сферические или цилиндрические глыбы антидейтерия будут удерживаться вблизи корабля с помощью электростатических полей определенной формы при постоянном (динамическом) регулировании. В настоящее время пока нет представления о том, каким способом подавать антивещество в зону реакции. Может быть, будет пригоден «простой» метод эрозии антивещества вследствие взаимодействия с ним потока вещества, захваченного массозаборником. Обсуждается и другой способ эрозии и разгона антивещества с помощью лазерной установки. Еще одна возможность использования космического пространства в качестве внешнего ресурса связана с высказываемой за рубежом идеей использования в качестве химического ракетного топлива космической пыли, заполняющей мировое пространство. Предполагается, что эта пыль может сгорать в пульсирующем детонационном ракетном двигателе. Хотя плотность пыли исключительно мала, при большой скорости движения космической ракеты может быть получена определенная реактивная тяга. Интересно, что в последнее время проведены успешные эксперименты, подтверждающие принципиальную осуществимость двигателя с детонационным сгоранием. Солнечные паруса и парусолеты Тип движителей, использующий внешний ресурс солнечного излучения, принято выделять в особую группу. Это солнечные паруса и так называемые солнечные энергодвигательные установки. Принцип работы солнечного паруса основан на действии давления падающих на поверхность солнечных лучей. Это свойство стало известно благодаря двум замечательным ученым: английский физик Джеймс Клерк Максвелл в 1873 году предсказал его теоретически, русский физик Петр Николаевич Лебедев в 1899 году доказал его существование путем эксперимента. Конечно же, сила давления лучей Солнца, действующих на распущенный в космосе зеркальный «парус», мала даже при значительной поверхности «паруса», но мы уже знаем, что в космосе даже малая сила в состоянии в течение большого времени разогнать массивный корабль до большой скорости. Неудобством является и то, что солнечный «ветер» дует всегда в одну сторону, от Солнца, и что его сила быстро ослабевает с расстоянием, но и это не может служить непреодолимым препятствием, по крайней мере для некоторых полетов в Солнечной системе. Первое такое исследование вопроса использования давления солнечных лучей было произведено Константином Циолковским. Более детальные расчеты осуществил главный радетель идеи использования внешних ресурсов Фридрих Цандер, который специально интересовался возможностью создания легких «зеркальных парусов». Он указывал, в частности, что если использовать в качестве «солнечного паруса» тончайшие листки металла, например алюминия на каркасе из проволоки, то его вес может составлять примерно 3 г/м? — ничтожная величина! Однако сила солнечного давления, приходящаяся на идеальное зеркало такой же площади, будет несоизмеримо меньше — всего 1 миллиграмм (в действительности же еще меньше). По Цандеру, можно снабдить космический летательный аппарат весом 500 килограммов подобным парусом огромной поверхности в 100 000 м? и весом 300 килограммов; таким образом будет создана ускоряющая сила менее 10 граммов. Эта сила уже одного порядка с тягой некоторых типов электроракетных двигателей. Она вызовет ускорение аппарата, равное примерно 0,2 мм/с?. Подобные ускорения уже могут обеспечить ряд межпланетных полетов. Интересны, в частности, результаты теоретических расчетов, выполненных сотрудниками Вычислительного центра Академии Наук СССР и доложенные ими на Всесоюзном съезде по теоретической и прикладной механике в 1964 году. По этим расчетам солнечно-парусные космические корабли, двигаясь по разработанным авторами оптимальным траекториям, могли бы достичь Марса за 122 суток, Венеры — за 164 суток, Меркурия — за 200 суток. Полет к Юпитеру должен длиться 6,6 года, к Урану — 49 лет. Близкие данные получены позднее и американскими учеными; в частности, полет к Марсу космического зонда весом 91 килограмм с помощью паруса площадью 46 м? должен потребовать, по этим данным, 135 суток. Эффективные «солнечные паруса» могут быть созданы с помощью разработанных химией пластмасс, тончайших и прочных полимерных пленок, если на эти пленки нанести распыливанием совершенно ничтожный слой металла для обеспечения достаточно высокой отражающей способности. Пленка гораздо удобнее металла в отношении ее хранения в свернутом виде (ведь огромный парус должен быть упакованным в небольшой контейнер ракеты, выводящей «солнечный» корабль в космос при взлете с Земли) и управления парусом. Один из проработанных проектов солнечного паруса был предложен в середине 60-х годов доктором Гарвином. По Гарвину, вес зеркала принимается равным весу остальных элементов летательного аппарата (иногда в несколько раз меньшим), так что общая масса его, приходящаяся на 1 м? поверхности паруса, равна 5 граммам. Парус Гарвина имеет вид гигантского парашюта диаметром примерно 21 метр, прикрепленного к летательному аппарату стропами длиной примерно 60 метров. Интересно, что солнечный «ветер» так слаб, что парашют наполняется только за 80 секунд!.. По другому проекту, разработанному в Лос-Аламосской научной лаборатории под руководством доктора Коттера, парус из пленки представляет собой плоский диск, натянутый на обруч диаметром примерно 50 метров. Запуск на орбиту спутника летательного аппарата с этим парусом (его общая масса-2 2 килограмма, из которых половина приходится на долю паруса) может быть осуществлен сравнительно маломощной ракетой. После выхода на орбиту под действием солнечного давления аппарат может постепенно отдаляться от Земли. Наконец, в проекте доктора Пауэла также применяется парашютообразный парус из пленки диаметром 480 метров при полезной нагрузке летательного аппарата 450 килограммов. Сила солнечного давления на такой парус площадью 180 000 м? должна составлять примерно 180 граммов. «Солнечные паруса» предполагается использовать для разных целей: стабилизации спутников на орбите (компенсации различных возмущающих воздействий), перевода на орбиту с большей высотой, а также межпланетных полетов (к Марсу и Венере). Эффективность «солнечного паруса» можно было бы существенно повысить при увеличении количества падающей на него солнечной энергии. Ведь сила солнечного давления пропорциональна этой энергии (она равна удвоенной величине энергии, деленной на скорость света). Сразу же напрашивается идея усиления этого давления за счет искусственного источника солнечного «ветра», по мере необходимости подгоняющего парусный космолет. Можно представить себе расположенные в космосе станции, направляющие подобные «толкающие» потоки частиц вещества или квантов энергии на летящий корабль, с тем чтобы полнее «надуть его паруса». Вспомним, что о подобном писал еще Герман Оберт. Особенно перспективными в этом отношении кажутся проведенные работы по лазерам — квантово-механическим генераторам когерентного света. Различные уже созданные лазеры — кристаллические (из них особенно широко известен лазер с кристаллом рубина), газовые и жидкостные — способны излучать тончайший ярко светящийся луч монохроматического света, то есть света одной, строго определенной частоты. Такой луч несет в себе жар миллионноградусной температуры, развивает огромное давление на встречную поверхность, распространяется на огромные расстояния, почти не расходясь, как это случается с лучом обычного прожектора. Правда, луч, излучаемый существующими лазерами, очень тонок и маломощен, но нет сомнений в возможности создания и гораздо более мощных квантовомеханических генераторов света. Вот тогда-то появится и возможность использования лазеров и для корректировки с Земли орбит спутников, и для расположения в космосе лазерных источников «космического ветра», способного надуть паруса межпланетных кораблей «дальнего следования». |
|
||
Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх |
||||
|