|
||||
|
Глава 20 Египетская математика Математические расчеты, например вычисление площадей и пропорций зданий, а также углов наклона стен пирамид и насыпей, по которым на эти стены доставлялись необходимые материалы, играли очень важную роль в строительстве любого масштаба, поэтому, прежде чем закончить обзор египетских методов строительства, было бы весьма уместно кратко описать, что мы знаем о математике древних египтян. Мы получили эти сведения из следующих источников: а) папируса, датируемого эпохой фараона Аусерра-Апопи, гиксосского правителя. Предполагают, что это копия документа времен фараона Аменемхета III. Сейчас этот источник известен под названием «Папирус Ринд»; б) документа, известного как «Московский папирус», времен Среднего царства; в) папирусов XII династии, известных как фрагменты из Кахуна; г) папируса времен Среднего царства, хранящегося сейчас в Берлине; д) двух деревянных табличек эпохи Среднего царства, хранящихся сейчас в Каирском музее (номера по каталогу 25367/8); е) демотического папируса римского периода, содержащего таблицы дробей; ж) нескольких таблиц дробей византийского периода; з) коптского остракона с таблицами дробей; и) «Математического папируса из Ахмима», датируемого VI–IX веками н. э. К этому следует добавить длинное сатирическое письмо, называемое «Папирус Анастаси I», которое мы уже цитировали (глава 8). Это письмо, хотя и не приводит способов решения проблем, показывает, что египтяне знали, как рассчитать количество кирпичей, необходимых для сооружения наклонной насыпи с внутренними перегородками, а также определить вес обелиска. Из всех этих документов самым ценным является «Математический папирус Ринд», поскольку он самый полный и освещает самый разнообразный круг вопросов[56]. Перед тем как оценить математические методы египтян, надо рассказать об особенностях их мышления. Они хорошо выражены в следующем высказывании: «Несмотря на то что греки приписывали египтянам мудрость философов, ни один народ не испытывал такого отвращения к отвлеченным размышлениям и не был так чистосердечно предан материальным интересам, как египтяне»[57]. Из всех наук это утверждение больше всего подходит к математике египтян. Профессор Пит пишет об особенностях математического мышления египтянина так: «Он не говорит и не думает о числе «восемь» как об абстрактном числе, он думает о восьми хлебах или восьми овцах. Он вычисляет наклон стороны пирамиды вовсе не потому, что это интересно, а потому, что ему нужно объяснить каменщику, каким образом надо будет обтесывать камень. Если он раскладывает 2/13 на 1/8 + 1/52 + 1/104, то вовсе не потому, что это ему нравится, а просто потому, что рано или поздно он встретится с дробью 2/13 при сложении, а поскольку он не знает, как складывать дроби, чей числитель больше единицы, ему потребуется приведенное выше разложение». У египтян была десятичная система счисления. Для обозначения единицы, десяти, ста и всех кратных десяти величин, вплоть до миллиона, у них были особые знаки. Целые числа записывались с помощью знаков, повторяемых столько раз, сколько было нужно. Для того чтобы написать, к примеру, число 879, требовалось двадцать четыре иероглифа, хотя в скорописи использовались многочисленные сокращения. Главная особенность египетской системы счисления заключается в выражении дробей, что делает ее совершенно не похожей на нашу. Дробь изображалась так: знак человеческого рта, который, по-видимому, читался как ре и означал «часть», писался над тем числом, которое мы сейчас назвали бы знаменателем. В египетском языке число, следовавшее за ре, имело порядковое значение, таким образом, ре, написанный над 5, означал «часть пяти», то есть «пятая часть», которая заключала собой ряд аналогичных частей, в сумме образующих число 5. Будучи частью, которой заканчивался ряд того или иного числа, ре в египетской дроби играл роль числителя. Для египетского способа мышления написать ре 4/7 было бы совершенной бессмыслицей, ибо в любой серии частей числа 7 только одна часть может быть одной седьмой, а именно та, которая занимала седьмое место в ряду семи равных частей. Хотя египтянин и мог понять, что означает четыре седьмых, тем не менее выражал дробь 4/7 в виде 1/2 + 1/14. Аналогичным образом, 11/49 выражалось в виде 1/7 + 1/14 + 1/98 или любым другим набором дробей, дающих в сумме то же число. Помимо знака ре у египтян был еще один, обозначавший дробь 1/2 или, как это ни странно, знак, обозначавший 2/3, что в реальности означало «две части» (из трех), и еще один для 3/4. Значок 2/3 играл очень важную роль в египетской арифметике, а вот значок 3/4 совсем, по-видимому, не использовался, кроме как, вероятно, в метрологии. Самыми важными расчетами для египтянина были те, в которых применялись деление и умножение, причем деление представляло большие сложности. Для того чтобы ускорить процесс деления, египтяне составляли таблицы, в которых записывались серии ре-дробей, где число 2 делилось на все нечетные числа до 101. Писцы использовали эти таблицы так же часто, как мы – таблицы логарифмов. Существовали, по-видимому, и другие таблицы, в которых приводились значения 2/3 разных чисел, хотя мы не знаем, как они выглядели. И только в поздние времена появились таблицы со значениями дробей 1: 7, 2: 7[58], 3: 7 и т. д., как суммы делителей[59]. Раскладывание числа 2, деленного на нечетные числа от 5 до 47, таковы: Не всегда понятно, почему египтяне предпочли именно эти значения для деления 2, хотя имеется много других. По-видимому, эти таблицы были составлены с учетом опыта многих поколений, а приведенные значения дробей – наиболее легкими для использования. Таким образом, египетский метод умножения и деления представлял собой систему проб и ошибок, состоявших из удвоения, деления на две части и умножения на две трети. Сначала определяли две трети какого-то количества и уже на основе этого, в случае необходимости, вычисляли одну треть, одну шестую и т. д. Процесс определения двух третей от целого числа не представлял особых трудностей. Что касается дробей, то древний метод заключался в прибавлении половины к одной шестой части. Так, 2/3 от 1/5 равняется 1/10 + 1/30, аналогичным образом, 2/3 от составляло 1/22 + 1/66. Почему египтяне в первую очередь не определяли одну треть нужного количества, мы не можем объяснить. Умножение на число, превышавшее 2 (за исключением 10), производилось, вероятно, очень редко. Папирус Ринд, представляющий собой более или менее продвинутую работу, почти не приводит примеров простого умножения или деления. Повсюду видно странное стремление все усложнять, и почти везде опущены этапы, очевидные для египтян, но часто непонятные для современного ума. Ниже приводятся примеры простого умножения и деления, выполненных древним способом, которые содержатся в папирусе Ринд и помогут читателям понять, в чем заключается проблема, поскольку ряд этапов в этих операциях опущен. (Способ сложения дробей объясняется ниже.)[60] 2) Получить 49 из 11 (разделить 49 на 11) 1 (умноженное на 11 дает) 11 Два, полученное из 11, – это 1/6 1/66 Найдено (см. таблицу дробей) Сколько двоек укладывается в 5 Ответ 21/2 Умножить 1/6 1/66 на 21/2 Всего 21/2» Ответ: 1/3 1/11 1/33 Прибавить число 4 Конечный ответ 41/3 1/33. Мы видим, что решение заключается в следующем: 1) сначала выясняют, сколько раз 11 содержится в 49 и каков остаток, 2) а затем, зная значение 2: 11, находят, умножая его на 21/2, значение остатка, или 5, разделенное на 11. 3) Задача № 30 из папируса Ринд Если писец говорит тебе: «10 стало 2/3 1/10 от какого числа? То пусть он услышит: Ты используешь 2/3 1/10, чтобы определить 10[61] Всего, количество, которое называет это 131/23. (Доказательство) Всего 10 Следует отметить, что процесс сложения дробей и определения, каким образом дробь 2/3 1/10 составляет 1/30, не приведены. Другие задачи, однако, приводят весь ход сложения дробей, который в принципе мало отличается от современного способа приведения их к общему знаменателю. В задаче № 32, приведенной в папирусе Ринд, необходимо сложить целый ряд дробей, чтобы доказать, что их сумма равна 1/4. Процесс решения заключается в следующем[62]: Всего: 228 (т. е.) 1/4 Профессор Пит объясняет ход решения тем, что «все дроби или делители, по-видимому, были приведены к самому большому делителю, а именно к 912: под каждой дробью красным написано число, показывающее, сколько раз число 912 входит в него. Как мы видим, это число не всегда является целым. Этот этап, должно быть, требовал подсчетов, которые в задачах на папирусе всегда опускаются. Красные числа суммируются и дают 228, которое представляет собой 1/4 от 912. Таким образом, сумма всех дробей действительно составляет 1/4…». В задаче № 30 папируса Ринд, которую мы привели выше, процесс сложения дробей гораздо более простой и, по-видимому, выглядел так: Сумма (для дробей) составляет 29, давая результат суммы дробей, равный единице без 1/30, а для всей задачи сумму, близкую к 10. Второй этап решения задачи, который опускается при ее описании, заключается в определении, сколько раз 1/30 входит в 2/3 1/10. Это выясняется путем обычного деления, и ход решения мог быть таким: С другой стороны, вполне возможно, что египтянин мог сразу определить, что три раза по 1/30 составляет 1/10, и его подсчеты могли быть такими: Профессор Пит объясняет этот этап так: «Поскольку 2/3 1/10 равно 23/30 – а это действие полностью опущено, то ответ должен быть 1/23». Выполнение этого действия в ходе цепи рассуждений заставило, по-видимому, профессора решить, что египтянин понимал, что означает 23/30, или представлял себе эту дробь как 23 части из тридцати. Это является логическим выводом из его метода сложения дробей путем приведения их к общему знаменателю. Если бы это было так, он смог бы выразить эту дробь только в виде ряда множителей, который мог при необходимости восполнить дробью 2/3. В папирусе Ринд приводится совершенно ненужное, с нашей точки зрения, число примеров умножения и деления, которое мы, с помощью алгебры, могли бы выразить несколькими пояснительными строчками или одной формулой. Причиной этого является тот факт, что задача, решаемая методом проб и ошибок, создает свои, только ей присущие трудности, причем некоторые из них требуют большой ловкости для разрешения. Уравнения первой степени решались египтянами простым методом проб и ошибок. Знали они также и уравнения второй степени, в которых имелось одно неизвестное. В Берлинском папирусе приводится задача – разделить 100 квадратных локтей на два квадрата, стороны которых соотносились друг с другом как 1 к 3/4. Знали египтяне и возведение во вторую степень, и извлечение квадратных корней. Первый процесс – это простое умножение, второй же заключался для самых простых чисел в длинной серии проб. В Берлинском папирусе приводятся квадратные корни для 6 1/4 и 11/2 1/16. Хотя древнее значение соотношения длины окружности к ее диаметру, или число п, и не встречается в математических папирусах, однако в папирусе Ринд дан пример (№ 50) определения площади круга. Способ заключался в вычислении 1/9 диаметра и возведении полученного числа во вторую степень. Сейчас мы выразили бы это формулой A = (8/9 D)2. Эта формула дает значение, близкое к реальному. Египтяне получили площадь круга, равную 0,7902 D2, тогда как в реальности она составляет 0,7854 D2. Эта площадь, вероятно, была определена таким образом: на разделенной на квадраты поверхности был нарисован круг и подсчитано число квадратов, попавших в него. У нас имеется много свидетельств того, что в поздние времена площадь треугольных полей для взимания налогов определялась как половина произведения самой длинной и самой короткой сторон. У нас почти нет сомнений в том, что в более ранние времена эту площадь египтяне правильно определяли как половину произведения основания треугольника и вертикальной высоты, или эмройет. Более того, они знали, что площадь равнялась половине прямоугольника, построенного на его основании с той же самой вертикальной высотой. Объем цилиндра вычислялся путем умножения квадрата его диаметра минус его девятая часть (см. выше) на длину, а объем симметричной пирамиды (по крайней мере) равнялся 1/3 площади основания, умноженной на высоту. Как объем определялся первоначально, мы не знаем, поскольку для доказательства этого потребуются знания, которыми египтяне не обладали, а практическая демонстрация получения пирамиды из параллелепипеда связана с огромными трудностями. Мистер Баттискомб Ганн в разговоре со мной высказал предположение, что египтяне сначала взвешивали параллелепипед, сделанный из глины или ила, а затем – пирамиду, отрезанную от него. Это простой и удобный метод, который египтяне вполне могли использовать. Самое удивительное заключается в том, что египтяне умели определять объем усеченной пирамиды. Если H – вертикальная высота, a – сторона квадрата основания, а b – сторона квадрата на вершине, то формула объема будет такова: H/3 (a2 + ab + b2) – именно в такой форме она и была известна в Древнем Египте. Усеченную пирамиду можно было превратить в параллелепипед, четыре клина и четыре косых пирамиды, из которых можно было собрать одну симметричную пирамиду. Было показано, что с помощью простого графического процесса формула, найденная путем разделения фигуры, может быть превращена в более удобную, которую и используют в наши дни в простых графических методах. Итак, мы охарактеризовали основные особенности египетского способа вычислений. Знание действий умножения и деления было вполне достаточно, чтобы решить любую проблему, возникавшую при сооружении храма, пирамиды или стены, и для измерения веса использованного при этом материала. Насколько далеко продвинулись египтяне в познании математики, мы узнаем в ходе дальнейших научных исследований, однако вряд ли писцы обладали более сложными математическими познаниями. Чтобы получить такие знания, египтянам надо было изменить не только свою систему вычислений, но и сам способ своего мышления. Рис. 142. Карта населенных пунктов Египта и Нижней Нубии, которые упоминаются в книге |
|
||
Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх |
||||
|