Иерусалим и Афины


В нашей прошлой беседе мы остановились на развитии открытого знания и особенно много внимания уделили идеалу открытого знания в еврейском обществе. Мы упомянули, что приблизительно во времена последних пророков и Эзры-книжника в Средиземноморье сформировалась другая культура, которая разработала свой идеал открытого знания. И действительно, между культурой Израиля и той греческой культурой, которая возникла в шестом веке до новой эры, имеется много сходного. Это сходство становится особенно разительным, когда мы сталкиваемся с представлением этих культур о самих себе.

В этом пункте обе упомянутые культуры отличаются от культуры любого другого общества, существовавшего в эту эпоху в Средиземноморье, а может быть, и где бы то ни было. Ибо каждое из двух этих обществ ощущало себя чем-то новым, не существовавшим в прошлом, и имело историческое сознание. Большинство же восточных народов того времени, например вавилоняне или египтяне, полагали, что они ведут свое происхождение от самых первобытных времен, от сотворения мира. И поэтому каждый из них смотрел на себя как на народ, существующий изначально.

Евреи же и греки знали, что они являются новыми народами. Ведь народ Израиля, как свидетельствует само Писание, превратился в большой народ только в Египте. Даже если принять точку зрения тех, кто исповедует теорию источников, согласно которой самые ранние слои Писания составлены примерно в 10-м или 9 веке до новой эры, то выход из Египта, по датировке самого составителя, если таковой существовал, произошел за двести лет до этого. Отсюда следует, что в любом случае евреи сознавали себя молодым народом, народом, имеющим историю возникновения.

Однако такому самосознанию может быть присуща некая ущербность, ибо ментальности примитивных народов свойственно превозносить только то, что обладает древностью, а ко всему новому относиться с подозрительностью. И можно предположить, что это осознание себя новым народом компенсировалось, уравновешивалось у евреев, сынов Израиля, представлением о Божественном управлении историей. Божество избрало еврейский народ на определенном этапе истории: когда Всевышний давал уделы народам, разделяя людей, установил Он границы народов по числу сынов Израиля. То есть еще задолго до появления евреев Бог предназначил и определил место для границ израильского народа. Другими словами, согласно версии профессора Йешаяѓу Лейбовича, еврейский народ появился не в земле Израиля, как ошибочно провозгласили авторы Декларации независимости.

Греки тоже знали, что они новый народ, что культура их молода. И, подобно евреям, они не видели в этом причин для гордости, — напротив, это являлось для них проблемой, которую следовало преодолеть, изъяном, который необходимо было объяснить. И вот, вопреки мнению европейских гуманистов 16 века, мы находим в греческой культуре явные следы чувства неполноценности, которое греки испытывали перед народами, чья древность считалась несомненной, например перед народами Востока, в первую очередь египтянами. В платоновском диалоге Тимей рассказывается о том, как египетский жрец обучал Солона историческим преданиям и истории греческого народа. Ведь культура греков еще очень молода, поскольку греки страдают забывчивостью.

Даже сознание того, что они не являются, так сказать, автохтонными культурами, явно выражено в обоих этих культурах, считавших себя пришлыми, явившимися в облюбованную ими землю извне, с отнюдь не роскошных берегов. Обе эти культуры, несмотря на то что они вели свою родословную от великих и славных предков, не могли гордиться происхождением от древних царей Востока. Когда Писание рассказывает о тех, кто гордится своей принадлежностью к древним царским родам, оно упоминает царей Тира или Египта. Израильский царь не мог величаться этим, точно так же греческий владыка знал о себе, что он завоеватель, чьи предки нагрянули с одной из волн захватчиков в ту страну, где он теперь живет. Однако греки чувствовали при этом, что они превосходят всех остальных людей, и это касалось прежде всего политической сферы. И действительно, они были свободными людьми, тогда как все народы Востока являлись рабами — рабами царя или власти. И именно этим чувством руководствовались греки, описывая войну между эллинами и персами, история которой, как это изображает Геродот, являлась историей борьбы идеала свободы с идеалом политического порабощения. Политический идеал греков — это идеал полиса, города-государства. Он не является тем идеалом личной свободы, который сформировался ныне, после катаклизмов и изменений, происшедших с конца 18 века. Это был идеал полисного самосознания, идеал независимого города-государства, где процветает автаркия и где личные качества человека развиваются в той степени, в какой этот человек является общественным существом.

По сути дела полис был как минимумом, так и максимумом; он был тем самым минимумом, который требуется для организации независимого, самостоятельного общества. Но он также являлся и максимумом, вне которого не могла существовать политическая свобода. Иначе говоря, не могло осуществиться полноценное и равное сотрудничество всех членов общества в политическом управлении государством.

С этим политическим идеалом, с идеалом свободы, связано возникновение идеала открытого знания. Однако начало греческой философии было положено не в Греции, а в греческих городах, находившихся в Малой Азии; только благодаря контактам с большим числом разных культур у греков появился алфавит, а вслед за этим — зачатки научного знания. И лишь в определенной политической атмосфере, благодаря политическому идеалу полиса, сумел развиться и стать осознанным идеал открытого знания, превратившийся в ту точку отсчета, с которой общество начало оценивать самого себя и свои принципы.

Сами греки никогда не отрицали того факта, что начатки культуры они тем или иным образом восприняли от других народов. И они сами свидетельствовали об этом, иногда открыто, в текстах исторического содержания, а иногда при помощи мифологии. Даже медицина, как и многие другие искусства, пришла к ним в виде мифа или в виде готовой практики извне, прежде всего с Востока. Но открытое греческое общество оказалось готово воспринять эти знания. Это было общество, которое создало открытое судопроизводство, законодательную систему, отданную не в руки каких-нибудь жрецов, а в руки общественной структуры, обязывающей общество делать законы достоянием гласности. Справедливости ради следует отметить, что законы Хаммурапи были обнародованы за много лет до возникновения греческой культуры, однако свод греческих законов был доступен для каждого и хранился не в высшей судебной коллегии, не у жрецов и не у представителей специальной касты судей, а находился в распоряжении судебных структур, которые, конечно, не были демократическими в современном смысле этого слова, но тем не менее являлись открытыми и не требовали для участия в них каких-либо обрядов инициации. Поэтому внутри греческой культуры появилась традиция, параллельная экзегетической традиции евреев, — традиция толкования закона. Эта традиция утверждает, что существует писанный или неписаный закон, и закон этот таков, что судьи, в том числе те, которые еще только ожидают назначения на должность, способны понять его и использовать на благо общества. Это значит, что уголовное или гражданское судопроизводство с определенной стороны уже готово к восприятию рационального доказательства и к судебному разбирательству, основывающемуся на тех или иных законодательных принципах. Здесь мы сталкиваемся с развитием очень важного метода, по существу являющегося открытым. И хотя на первых порах этот метод использовался только в судопроизводстве, он проложил путь всестороннему обсуждению других основополагающих вопросов и принципов, а уже затем — общей концепции знания в широком смысле этого слова.

Мы не найдем другой такой сферы, где бы поворот в сторону открытого знания совершился столь наглядным образом, как в сфере представлений о математическом доказательстве, которые впервые возникли у греков. Возьмем к примеру теорему Пифагора, доказывающую, что площадь квадрата, стороной которого является гипотенуза прямоугольного треугольника, равна сумме площадей квадратов, стороны которых являются катетами этого треугольника.

Эта теорема в качестве эмпирического положения была известна еще древним египтянам, которые широко использовали ее при землемерных вычислениях. И понимали, как это представляется, что в руках у них надежное правило, не знающее исключений. Тем не менее египтяне даже не пытались доказать это правило; мало того, даже само понятие доказательства было чуждо египетской математике.

Напротив, Евклидовское геометрическое доказательство, как и предшествующее ему пифагоровское (несмотря на то, что доказательство у Пифагора было чрезвычайно примитивным, намного более примитивным, чем то, которое использовал 150 лет спустя Евклид в своих Основаниях геометрии), покоилось на незыблемых принципах. Это было абсолютное доказательство, справедливое для любого прямоугольного треугольника, не терпящее никаких исключений. Эмпирически, с точки зрения практики, у доказательства нет никакого преимущества. Теоремой Пифагора можно пользоваться независимо от того, знаешь ты ее доказательство или не знаешь, а доказательство является исключительно идеалом чистого умозрения. Обратим внимание на другое столь же знаменитое доказательство Евклида — доказательство того, что среди натуральных чисел не существует самого большого простого числа. Доказательство Евклида гласит: предположим, что существует самое большое простое число. Построим число, являющееся произведением всех простых чисел, включая то, которое считается самым большим, и прибавим к нему единицу. Это новое число — то есть произведение всех простых чисел плюс единица — либо само является простым числом, либо является произведением простых чисел, каждое из которых больше, чем число, названное нами самым большим простым числом. И действительно, рассматриваемое нами число, то есть произведение всех простых чисел, включая то, которое считается самым большим, плюс единица, не делится без остатка ни на самое первое из простых чисел, то есть на два, ни на три, ни на пять, ни на семь, ни на одиннадцать, ни на тринадцать, ни на любое другое простое число. Значит, оно может делиться только на такое простое число, которое больше того числа, про которое мы предположили, что оно является самым большим простым числом. Следовательно, наше исходное предположение неверно и самого большого простого числа не существует. Ради чего мы целиком привели это доказательство? Ради двух вещей, которые мы можем из него понять. Во-первых, что это доказательство не потеряло своей актуальности и поныне и является базисом того, что в современной математике называется теорией чисел. Большое число теорем в той или иной мере связано с этим евклидовским доказательством, в том числе доказанное уже в 19 столетии утверждение, что между кратными числами находится по крайней мере одно простое число.

Но важнее другое. Это доказательство является абсолютным; это не эмпирическое доказательство. Оно не показывает, каким образом следует проверять простые числа, чтобы отыскать среди них самое большое, а является доказательством, имеющим силу для любого числа. И наконец, это доказательство не имеет никакого практического значения. И действительно, оно не учит нас тому, как строятся простые числа. Напротив, следует сказать, что это доказательство является самым первым примером того, что в математике зовется доказательством существования. Мы доказываем существование математического объекта даже в том случае, когда мы не умеем его построить. Таким путем уже много позже были найдены иррациональные числа, трансцендентные числа и еще целая группа весьма важных чисел. Справедливости ради следует добавить, что значительная часть того, что зовется числом в современной математике, является тем, существование чего можно доказать, но что нельзя построить.

Двум упомянутым выше культурам, греческой и еврейской, была свойственна одна важная особенность, способная стать инструментом для создания общества, обладающего открытым знанием. Эту особенность можно с некоторой натяжкой назвать склонностью к интеллектуальной игре. Ведь речь идет об обществе, которое в определенном смысле можно назвать свободным, обществе, члены которого занимаются вещами, представляющими для них интерес. И они находят нужным посвящать свое время такого рода рассуждениям, которые можно охарактеризовать как чистую науку, как изучение ради изучения. Это явление, совершенно новое для той эпохи, возникло в каждом из этих обществ в характерной для него форме и обрело характерные для этого общества способы выражения. Вместе с тем рассуждения необязательно должны были приводить к практическим результатам, поскольку практическое использование этих рассуждений не во всех случаях представлялось уместным. Таким образом, в сфере открытого знания происходит легитимация игры или длительных штудий, которые не могут быть втиснуты в узкие рамки той или иной практической дисциплины. Ни еврейский мудрец, ни греческий философ никогда не задавались вопросом: какая от этого польза? Тот факт, что исследование такого рода узаконено, открывает новые возможности для познания. И в связи с этим понятие доказательства ради доказательства перестает быть лишь интеллектуальным изыском, существующим ради самого себя. В аспекте того, изучением чего мы занимаемся, это понятие становится посредником и проводником такого положения вещей, при котором предмет знания перестает быть закрытым, таинственным, и поэтому доступным только для посвященных. Такое явление, как доказательство, позволяет каждому человеку провести рассуждение, понять его и усвоить.

И еще: мы имеем в виду не только то, что у любого человека имеется доступ к этому знанию, но и то, что это знание вовсе не характеризуется тем, что человек, обративший на него внимание, способен постичь его с первого взгляда. Это не интуитивное знание, а такое знание, которое осознает собственные критерии, свои собственные меры оценки, и именно на этом зиждется тот метод доказательства от противного, которым руководствовался Евклид в рассмотренной нами теореме, и все остальные теоремы и доказательства, изложенные Евклидом систематическим образом как строгая наука с использованием научного инструментария, который чуть позже был описан Аристотелем в учении, названном им логикой. Логика — это учение о тех общих принципах, которые открыты для каждого, универсальны, которые можно сформулировать и при помощи которых знание доказывает свое право называться истинным знанием.









 


Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх