|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Инженерные боеприпасы За последние десятилетия в армиях развитых стран проведены крупномасштабные мероприятия по совершенствованию обычного оружия, среди которого важное место отводилось инженерному вооружению. В состав инженерного вооружения входят инженерные боеприпасы, создающие наилучшие условия для эффективного применения всех видов оружия и защиты своих войск от современных средств поражения, затрудняя действия противника с нанесением ему значительных потерь. Использование инженерных боеприпасов в последних локальных конфликтах показало их возрастающую роль в решении оперативно-тактических задач. На вооружении инженерных войск появились системы дистанционного минирования, позволяющие устанавливать мины в ходе боя и на значительном удалении от переднего края – на территории противника. Инженерные боеприпасы позволяют также создавать условия для скоростного преодоления войсками минных полей противника. В этом случае используются наиболее перспективные боеприпасы объемного взрыва. Что же относится к инженерным боеприпасам? Это, в первую очередь, мины различного назначения – противотанковые, противопехотные, противодесантные и появившиеся недавно противовертолетные, а также заряды разминирования и ряд зарядов вспомогательного назначения. Современная мина – это многофункциональное устройство. Некоторые образцы новых мин содержат элемент искусственного интеллекта и обладают способностью оптимизации выбора цели из нескольких и ее атаки. Особо следует отметить противопехотные мины, по поводу запрещения которых началась кампания государств, желающих окончательно разоружить Россию. В связи с резким сокращением численности Вооруженных Сил роль инженерных боеприпасов возрастает. Учитывая то, что инженерные боеприпасы в основном играют оборонительную роль, наше политическое и военное руководство должно не разоружаться, а содействовать совершенствованию и повышению эффективности этого вида вооружения, которое достаточно надежно и имеет высокие показатели по критерию «эффективность – стоимость». Общее направление и цель развития инженерного вооружения, главным образом, определяется способностью эффективно поражать современные и перспективные цели в интересах сухопутных войск. Рассмотрим особенности и технические характеристики инженерных боеприпасов. До последнего времени в развитых странах производилось большое количество разных по конструкции противотанковых мин, из всего многообразия существующих конструкций которых можно выделить три основных типа: противогусеничные, противоднищевые и противобортовые. Противогусеничные мины до недавнего времени считались основными, но постепенно утрачивают свое значение. Главным недостатком этих мин является их ограниченная боевая возможность: обычно из строя выводятся только отдельные узлы ходовой части танка. И тем не менее противогусеничные мины пока в достаточно большом количестве имеются в войсках различных стран. Противогусеничные мины предназначены идя вывоза из строя гусеничных, и колесных боевых и транспортных машин путем разрушения или повреждения, главным образом, их ходовой части (гусениц, колес). Установка этих мин осуществляется с помощью минных заградителей или вручную (как в грунт, так и на его поверхность). Противогусеничные отечественные мины имеют цилиндрическую форму, за исключением мины ТМ-62Д, имеющей форму параллелепипеда. Основные характеристики отечественных противогусеничных мин представлены в табл.1, а зарубежных – в табл.2. На рис I, 2 представлены схемы конструкций мин ТМ- 46 и ТМ-62Т. Противогусеничные мины оснащены механическими взрывателями нажимного действия, которые ввинчиваются в центральное гнездо корпуса. Давление на взрыватель от гусеницы танка передается через нажимную крышку. В боковой и донной частях корпуса мины предусмотрены гнезда для дополнительных взрывателей. Они используются, когда надо установить мины в неизвлекаемое положение. В основном, корпуса и взрыватели современных мин изготовлены из пластмассы, поэтому их нельзя обнаружить с помощью индукционных миноискателей. Благодаря герметичности корпусов мин большинство из них можно использовать для минирования водных преград. Рис.1. Противогусеничная мина ТМ-46: а) – внешний вид; б) – разрез мины; 1 – корпус; 2 – диафрагма; 3 – крышка; 4 – взрыватель МВМ; 5 – заряд ВВ; 6 – промежуточный детонатор; 7 – колпачок; 8 – ручка. Таблица 1 Основные характеристики противогусеничных мин
Таблица 2 Зарубежные противогусеничные мины
Таблица 3 Зарубежные противоднищевые мины
Рис.2. Противогусеничная минаТМ-62Т: 1-корпус; 2- заряд ВВ; 3 – запальный стакан; 4 – взрыватель МВП- 62; 5 – ударник взрывателя; 6 – шашка запального стакана; 7 – передаточный заряд взрывателя; 8 – капсюль-детонатор взрывателя. С точки зрения снаряжения, отечественные мины – «всеядны». Они снаряжаются тротилом (Т), смесями A-IX2, МС, ТМ; сплавами ТГА- 16, ТГ-40; аммотолами А- 50, А-80 и др. Данные табл.1 свидетельствуют о том, что большинство представленных противогусеничных мин имеют значительные габариты и большую массу ВВ. Наиболее интересна английская противогусеничная мина L9AI, имеющая удлиненную форму (ее размеры 1200x100x80 мм). Для устройства противотанкового минного поля таких мин требуется в два раза меньше, чем мин, имеющих корпус цилиндрической формы. Удлиненные мины более удобно хранить и транспортировать. Корпус мины L9A1 пластмассовый. Нажимная крышка расположена в верхней части корпуса и занимает две трети его длины. Для установки этой мины в грунт или на его поверхность применяется прицепной минный заградитель. В ряде стран для дистанционных систем минирования разработано несколько образцов противогусеничных мин, рассчитанных на поражение ходовой части танка при контактном взрыве. Эти мины имеют относительно небольшие размеры и массу. Противогусеничная мина М56 (США) является компонентом вертолетной системы минирования. Корпус мины имеет форму полуцилиндра и снабжен четырьмя раскрывающимися стабилизаторами, которые обеспечивают уменьшение скорости падения мины (минирование осуществляется с высоты около 30 м). На плоской поверхности корпуса расположена нажимная крышка. Электромеханический взрыватель находится в торцевой части корпуса и имеет две ступени предохранения. Первая снимается при выходе мины из кассетной установки, вторая – через одну-две минуты после падения на землю. В боевом положении мина может быть обращена нажимной крышкой как вверх, так и вниз. Взрыватель оснащен элементом самоликвидации, который приводит к взрыву мины по истечении определенного времени. Мина М56 выполняется в трех вариантах. Мины первого (основного) варианта оснащены однотактным взрывателем, второго – двухтактным, срабатывающим при повторном воздействии на нажимную крышку. Взрыватель у мины третьего варианта приводится в действие от сотрясения корпуса мины или изменения ее положения. Мины последних двух вариантов предназначаются для того, чтобы помешать противнику удалять их из проходов вручную или проделывать проходы в минном заграждении с помощью катковых тралов. Западногерманскими минами АТ-1 снаряжаются 110-мм кассетные боеприпасы РСЗО «Ларс». В каждом боеприпасе размещается по 8 мин, оснащенных взрывателем нажимного действия, элементами необезвреживаемости и самоликвидации. В Италии разработано несколько образцов противогусеничных мин, предназначенных для установки вертолетными системами, в их числе мина SB-81, имеющая пластмассовый корпус и электромеханический взрыватель с нажимным датчиком. Помимо вертолетов эта мина может устанавливаться минным заградителем. Противоднищевые мины по сравнению с противогусеничными имеют значительно большую эффективность поражающего действия. Взрываясь под днищем танка и пробивая его, они поражают экипаж и выводят из строя вооружение и оборудование машины. Взрыв такой мины под гусеницей танка выводит ее из строя. Противоднищевые мины оснащаются кумулятивным зарядом или зарядом на принципе ударного ядра. Большинство противоднищевых мин имеют неконтактные взрыватели с магнитными датчиками, которые улавливают изменения магнитного поля при прохождении танка над миной. Такой взрыватель установлен у шведской противоднищевой мины FFV028. При прохождении танка над миной электрическое напряжение подается на электродетонатор, который инициирует взрыв вскрышного, а затем (с некоторой задержкой по времени) и основного заряда (бронепробиваемость мины с расстояния 0,5 м составляет 70 мм). При срабатывании вскрышного заряда сбрасывается верхняя часть взрывателя, крышка корпуса мины и маскировочный слой грунта, тем самым создаются благоприятные условия для формирования ударного ядра. Типовая компоновочная схема противоднищевой мины SB-MV/T представлена на рис.3. Рис.3. Компоновочная схема противотанковой мины SB-MV/T: 1 – магнитный датчик; 2 – источник питания; 3 – программный элемент устройства нейтрализации мины; 4-сейсмический датчик; 5 – устройство задержки перевода взрывателя в боевое положение; 6 – рычажок перевода взрывателя в боевое положение; 7 – элемент включения взрывателя; 8 – основной заряд; 9 – переходной заряд; 10 – детонатор; 11 -капсюль-воспламенитель; 12 – вскрышной заряд. Французская противоднищевая мина HPD оснащена взрывателем с магнитным и сейсмическими датчиками. Бронепробиваемость мины с расстояния 0,5 м составляет 70 мм. Мина взрывается при одновременном срабатывании обоих датчиков. Для сбрасывания крышки корпуса и маскировочного слоя грунта в мине HPD применен дополнительный (вскрышной) заряд. Минирование этими минами осуществляется с помощью минного заградителя. Большое внимание уделяется разработке противоднищевых мин для систем дистанционного минирования. В США, например, созданы разбрасываемые противоднищевые мины с помощью артиллерийских и авиационных систем минирования (мины М70, М73 и BLU-91/B). Эти мины отличаются небольшими габаритами и оснащены неконтактными взрывателями с магнитными датчиками и элементами неизвлекаемости. Мины М70 и М73 являются компонентами артиллерийской противотанковой системы минирования RAAMS (для 155-мм гаубиц). В кассетных снарядах этой системы содержится девять мин М70 или М73, которые имеют кумулятивные заряды, направленные в противоположные стороны, что не требует специального ориентирования на поверхности грунта. По конструкции эти мины одинаковы и различаются только сроком самоликвидации. Таблица 4 Эффективность противогусеничных и противоднищевых мин
Западногерманская противоднищевая мина АТ-2 предназначена для устройства противотанковых заграждений с использованием наземной, ракетной и авиационной систем минирования. Мина имеет боевую часть на принципе ударного ядра. Сравнительная эффективность противогусеничных и противоднищевых мин представлена на рис.4 и в табл.4. Противобортовые мины предназначены для поражения танков и бронемашин на расстоянии нескольких десятков метров. Эти мины эффективны при использовании для перекрытия дорог и устройства заграждений в лесах и населенных пунктах. Поражающим элементом у противобортовых мин является ударное ядро или кумулятивная противотанковая граната, выстреливаемая из трубы-направляющей. На вооружении французской и английской армий состоит мина МАН F1 (рис.5), имеющая боевую часть (бронепробиваемость 70 мм с расстояния 40 м) на принципе ударного ядра. Корпус мины может поворачиваться в вертикальной плоскости относительно опоры, состоящей из двух стоек и опорного кольца. Взрыватель приводится в действие от 40-метрового контактного провода. Американская противобортовая мина М24 состоит из 88,9-мм гранаты (от противотанкового ружья М29),-трубы-направляющей, взрывателя с контактным датчиком, выполненным в виде ленты, источника питания и соединительных проводов. Труба-направляющая выполняет роль контейнера, в котором хранится и транспортируется мина. Размещают установку на расстоянии около 30 м от дороги или прохода. При наезде гусеницей танка на контактную ленту замыкается цепь взрывателя и противотанковая граната выстреливается. Разработан усовершенствованный образец этой мины – М66. От М24 он отличается тем. что вместо контактного датчика используются инфракрасный и сейсмический датчики. В боевое положение мины переводятся после того, как срабатывает сейсмический датчик. Он же включает инфракрасный датчик цели. Граната выстреливается как только бронецель пересечет линию излучатель-приемник. Противотанковые минные поля (ПТМП) устанавливают прежде всего на танкоопасных направлениях перед фронтом, на флангах и стыках подразделений, а также в глубине для прикрытия огневых позиций артиллерии, командно-наблюдательных пунктов и других объектов. Противотанковое минное поле обычно имеет размеры по фронту 200…300 м и более, в глубину – 60… 120 м и более. Мины устанавливают в три-четыре ряда с расстоянием между рядами 20…40 м и между минами в ряду – 4…6 м для противогусеничных и 9… 12 м для противоднищевых мин. Расход мин на 1 км минного поля составляет 550…750 противогусеничных или 300…400 противоднищевых мин. На особо важных направлениях ПТМГ1 могут устанавливаться с повышенным расходом мин: до 1000 и более противогусеничных или 500 и более противоднищевых мин. Такие минные поля обычно называются минными полями повышенной эффективности. Рис.5. Компоновочная схема противобортовой мины МАН F1: 1-заряд; 2 – медная облицовка; 3 – опорное кольцо; 4 – капсюль-детонатор; 5 – взрыватель; 6 – источник питания; 7 – переходной заряд; 8 – детонатор. Рис.4. Сравнительная эффективность поражающею действия противолнишевых и противогусеничных мин: 1 – зона действия противоднищевой мины; 2 – зона действия противогусеничной мины. Таблица 5 Зарубежные противобортовые мины
Противопехотные мины разнообразны по конструкции и, в основном, бывают фугасного или осколочного типа. Основные характеристики некоторых образцов отечественных противопехотных мин представлены в табл.6. Название МОН-50 означает, что данная мина обладает осколочно-направленным действием. Эти мины состоят на вооружении различных стран. Обычно пластмассовые корпуса таких мин выполняются в форме изогнутой призмы, в которых размещен заряд пластичного ВВ с большим количеством осколков. Для удобства установки на поверхности земли внизу корпуса мины имеются шарнирно укрепленные ножки. Наиболее распространенным способом приведения мины в действие является использование штатного взрывателя натяжного действия, срабатывающего, когда цель заденет натянутую проволоку. При взрыве мины образуется плоский пучок осколков. Мины осколочно-направленного действия предназначены для поражения личного состава, движущегося в развернутых боевых порядках. Индекс ПМН означает, что данная мина – противопехотная нажимного действия. Устройство противопехотной мины ПМН представлено на рис.6. В настоящее время широко используются подпрыгивающие осколочные противопехотные мины. Срабатывание такой мины происходит при задевании идущим человеком натяжной проволоки или при давлении на специальные проводники, соединенные взрывной цепью. В результате этого происходит воспламенение вышибного порохового заряда, с помощью которого мина выбрасывается на высоту груди идущего человека, где происходит взрыв и поражение осколками находящихся в этой зоне людей. Противопехотные минные поля (ППМП) устанавливаются перед передним краем и, как правило, впереди противотанковых в целях их прикрытия. Они могут быть из фугасных мин, осколочных, а также в сочетании из фугасных и осколочных мин. ППМП в зависимости от их назначения устанавливают протяженностью по фронту от 30 до 300 м и более, в глубину – 10…50 м и более. Количество рядов в минном поле обычно два-четыре, расстояние между рядами – 5 м и более, между минами в ряду не менее I м для фугасных и один-два радиуса сплошного поражения для осколочных мин. Расход мин на 1 км минного поля принимают: фугасных – 2000…3000 шт.; осколочных – 100…300 шт. На направлениях, где пехота наступает большими массами могут устанавливаться ППМП повышенной эффективности – с двойным или тройным расходом мин. Таблица 6 Основные характеристики противопехотных мин
Рис.6. Противопехотная мина ПМН: а) – общий вид; б) – разрез; 1 – корпус; 2 – щиток; 3 – колпак; 4 – проволока или лента; 5 – шток; 6 – пружина; 7 – разрезное кольцо; 8 – ударник; 9 – боевая пружина; 10 – упорная втулка; 11 – предохранительная чека; 12 – металлоэлемент; 13 – заряд ВВ; 14 – запал МД-9; 15 – заглушка; 16 – колпачок; 17 – прокладка; 18 – металлическая рамка; 19 -струна. Таблица 7 Основные характеристики противодесантных мин
Таблица 8 Основные характеристики специальных мин
Рис.7. Мина ПДМ-2 на низкой подставке: 1 – штанга; 2 – чека; 3 – взрыватель; 4 – корпус с зарядом ВВ; 5 – контра- гайка; 6 – бопт; 7 – фланец; 8 – верхняя балка; 9 – нижняя балка; 10 – стальной лист; 11 – шайба; 12 – защёлка; 13 – ручка; 14 – ролик. Рис.8. Корпус мины ПДМ-2: 1 – корпус; 2 – центральная горловина; 3-стакан; 4 – промежуточный детонатор; 5 – боковая горловина; 6 – ниппель; 7 – заряд; 8 – прокладки; 9 – заглушки. Рис.9. Заряд С3-3Л: а) – общий вид; б) – разрез; 1 – корпус; 2 – заряд ВВ; 3 – промежуточные детонаторы; 4 – запальное гнездо под капсюль-детонатор; 5 – гнездо для специального взрывателя; 6 – пробки; 7 – ручка; 8 – кольца для привязывания заряда. 1 – корпус; 2 – кумулятивная облицовка; 3 – заряд ВВ; 4 – промежуточный детонатор; 5 – запапьное гнездо; 6 – ручка; 7 – выдвижные ножки; 8 – пробка. Рис.10. Заряд С3-6М: 1 – оболочка из капрона; 2 – оболочка из полиэтилена; 3 – заряд пластичного ВВ; 4 – промежуточные детонаторы; 5 – резиновые муфты; 6 – металлические обоймы; 7 – гнездо под капсюль-детонатор; 8 – гнездо для специального взрывателя; 9 – пробки; 10 – накидная гайка; 11 – кольца для привязывания заряда. В настоящее время инженерные войска развитых государств располагают ядерными минами с тротиловым эквивалентом от 2 до 1000 т. Оценивая эффективность ядерных мин, зарубежные специалисты считают, что они могут быть использованы как многоцелевое средство борьбы с наступающими войсками противника. Считается, что при взрыве ядерных мин, находящихся в специальных бетонированных или грунтовых колодцах, создаются зоны разрушений и заражения, которые способны расчленить боевые порядки войск противника, направлять его продвижение в районы, выгодные для нанесения по нему обычных и ядерных ударов. Важным направлением использования ядерных мин считается усиление минно-взрывных заграждений на танкоопасных направлениях. Заградительный эффект ядерных мин обусловлен созданием в результате взрывов воронок, завалов, зон разрушений и заражения, являющихся серьезным препятствием на путях движения войск. Воронка от взрыва ядерной мины является труднопреодолимым препятствием, так как большие размеры ее, крутые откосы и быстрое наполнение водой сильно затрудняют движение не только автотранспорта, но и танков. Размеры воронок будут зависеть от тротилового эквивалента ядерных мин, глубины их заложения и способов подрыва. При взрыве мины на поверхности земли мощностью 1,2 кт образуется воронка диаметром 27 м и глубиной 6,4 м; тот же заряд, взорванный на глубине 5 м, образует воронку диаметром 79 м и глубиной до 16 м, а на глубине 20 м – диаметром 89 м и глубиной 27,5 м. Заградительный эффект взрыва ядерной мины усиливается выпадением радиоактивных осадков на значительной площади. Для минирования водных рубежей в зонах возможной высадки десанта используются противодесантные мины с целью поражения десантных плавающих средств и боевых транспортных машин. Основные характеристики этих мин представлены в табл.7, отличительной чертой которых является их использование в подводном положении. Устройство противодесантных мин и их основные компоненты представлены на примере мины ПДМ-2 на рис.7, 8. Для минирования железнодорожных путей (ЖДМ-6), автомобильных дорог (АДМ-7, АДМ-8) и решения других специфических задач используются специальные мины (табл.8). Мины МПМ, СПМ, БИМ обладают свойством «прилипания» (с помощью магнита или клеющего материала) и имеют квазикумулятивную облицовку для образования в преградах значительных по размеру пробоин. Для проделывания проходов в противотанковых и противоминных полях применяются удлиненные заряды разминирования (табл.9). Они надвигаются вручную или механизированным способом, или запускаются на минное поле с помощью реактивных двигателей. Поэтому заряды ВВ размещены в металлических трубах или в гибких тканевых или пластмассовых рукавах (шлангах). Заряды УЗ-1, УЗ-2, УЗ-З и УЗ-ЗР представляют собой металлические трубы, в которых размешены прессованные шашки из тротила. Заряд УЗ-67 состоит из рукава (материал – ткань на основе капрона), в котором тротиловые шашки нанизаны на гибкий шланг с ВВ типа A-IX-1. Заряды УЗП- 72 и УЗП-77 имеют в основе гибкий канат с намотанными слоями пластичного заряда из ПВВ-7, размещенными в рукаве из специальной ткани. Таблица 9 Основные характеристики удлиненных зарядов разминирования
Примечание: п.м. – погонный метр. Таблица 10 Основные характеристики сосредоточенных зарядов
Таблица 11 Основные характеристики кумулятивных зарядов
Таблица 12 Характеристики тротиловых шашек
Таблица 13 Характеристики шашек из пластичного ВВ
Таблица 14 Характеристики детонирующих шнуров
Рис.12. Кумулятивный заряд КЗУ-2: а) – продольный разрез; б) – поперечный разрез; 1 – пенопластовый вкладыш; 2 – заряд ВВ (ТГ-40); 3 – корпус; 4 – пробка; 5 – прокладка; 6 – втулка; 7 – прокладка; 8- стакан; 9 – шашка ВВ A-XI-1; 10 – колпачок; 11 -кольцо; 12 – защелка; 13 – планка; 14 – скоба; 15 – пластинчатая пружина; 16 – магнит; 17 – кумулятивная облицовка; 18 – прижим. Рис.13. Схемы установки зарядов КЗУ-2 (стрелкой указано место установки электродетонатора или взрывателя) Для проведения подрывных работ в условиях внештатных ситуаций, например, когда необходимо изготовить в кратчайший срок самодельную мину, используются сосредоточенные заряды (табл.10). Заряды СЗ-ЗА (рис.9), СЗ-6, СЗ-6М (рис. 10) могут применяться для подрывных работ под водой. Необходимо отметить, что заряды СЗ-ЗА, СЗ-6 и СЗ-6М могут успешно использоваться при подводных подрывных работах. Кумулятивные заряды (табл.11) применяются для пробивания или перерезания толстых металлических плит при разрушении броневых и железобетонных оборонительных сооружений. Конструкция и элементы кумулятивных зарядов КЗ-2, КЗУ-2 представлены на рис.11-13. В инженерных войсках для проведения подрывных работ тротил и пластичные ВВ применяются в виде шашек, основные характеристики которых представлены в табл. 12,13. Для передачи взрывного импульса при проведении подрывов в инженерных войсках широко используются детонирующие шнуры (табл.14). Из всех боеприпасов, состоящих на вооружении Российской армии, инженерные боеприпасы замечательны тем, что они являются боеприпасами двойного назначения, т.е. могут быть использованы при проведении взрывных работ в народном хозяйстве для решения конкретных задач в горной, металлургической и в нефтедобывающей промышленностях. По этой причине не требуется финансирование для их утилизации. Инженерные боеприпасы, сроки эксплуатации которых подошли к концу, должны передаваться в гражданские организации, ведущие взрывные работы (например, в горнодобывающей промышленности). На металлургических комбинатах к настоящему времени скопились миллионы тонн, так называемых, скрабов, представляющих собой крупногабаритные многотонные объекты со значительным содержанием железа. В связи с кризисным состоянием нашей металлургической промышленности эти скрабы могут служить хорошей сырьевой базой. Но по понятным причинам такие скрабы невозможно транспортировать и загружать в доменные печи, т.е. требуется их разделка. В данном случае инженерные боеприпасы являются незаменимым инструментом для решения этой задачи. При этом технология разделки такого скраба заключается в следующем. С помощью подрыва кумулятивного заряда (КЗ-1, КЗ-2, КЗ-4) в скрабе создается кратер (значительный по глубине и диаметру), который заполняется ВВ и производится подрыв. В результате этих мероприятий скраб разрушается на части, поддающиеся транспортировке и загрузке в доменную печь. Это только один из тысячи примеров использования инженерных боеприпасов в народном хозяйстве. Создание нового поколения высокоэффективных инженерных боеприпасов двойного назначения позволит, с одной стороны, обеспечить боевые действия Сухопутных войск и, с другой – их использование в народном хозяйстве (после истечения срока эксплуатации) значительно сэкономит финансовые ресурсы нашего государства. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Главная | В избранное | Наш E-MAIL | Прислать материал | Нашёл ошибку | Верх |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|